Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(1): E41-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23169651

RESUMO

Budding yeast cells suffering a single unrepaired double-strand break (DSB) trigger the Mec1 (ATR)-dependent DNA damage response that causes them to arrest before anaphase for 12-15 h. Here we find that hyperactivation of the cytoplasm-to-vacuole (CVT) autophagy pathway causes the permanent G2/M arrest of cells with a single DSB that is reflected in the nuclear exclusion of both Esp1 and Pds1. Transient relocalization of Pds1 is also seen in wild-type cells lacking vacuolar protease activity after induction of a DSB. Arrest persists even as the DNA damage-dependent phosphorylation of Rad53 diminishes. Permanent arrest can be overcome by blocking autophagy, by deleting the vacuolar protease Prb1, or by driving Esp1 into the nucleus with a SV40 nuclear localization signal. Autophagy in response to DNA damage can be induced in three different ways: by deleting the Golgi-associated retrograde protein complex (GARP), by adding rapamycin, or by overexpression of a dominant ATG13-8SA mutation.


Assuntos
Anáfase/fisiologia , Autofagia/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Proteínas de Fluorescência Verde , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales , Securina , Separase , Sirolimo/farmacologia
2.
Appl Environ Microbiol ; 77(3): 732-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131518

RESUMO

Malic enzyme catalyzes the reversible oxidative decarboxylation of malate to pyruvate and CO(2). The Saccharomyces cerevisiae MAE1 gene encodes a mitochondrial malic enzyme whose proposed physiological roles are related to the oxidative, malate-decarboxylating reaction. Hitherto, the inability of pyruvate carboxylase-negative (Pyc(-)) S. cerevisiae strains to grow on glucose suggested that Mae1p cannot act as a pyruvate-carboxylating, anaplerotic enzyme. In this study, relocation of malic enzyme to the cytosol and creation of thermodynamically favorable conditions for pyruvate carboxylation by metabolic engineering, process design, and adaptive evolution, enabled malic enzyme to act as the sole anaplerotic enzyme in S. cerevisiae. The Escherichia coli NADH-dependent sfcA malic enzyme was expressed in a Pyc(-) S. cerevisiae background. When PDC2, a transcriptional regulator of pyruvate decarboxylase genes, was deleted to increase intracellular pyruvate levels and cells were grown under a CO(2) atmosphere to favor carboxylation, adaptive evolution yielded a strain that grew on glucose (specific growth rate, 0.06 ± 0.01 h(-1)). Growth of the evolved strain was enabled by a single point mutation (Asp336Gly) that switched the cofactor preference of E. coli malic enzyme from NADH to NADPH. Consistently, cytosolic relocalization of the native Mae1p, which can use both NADH and NADPH, in a pyc1,2Δ pdc2Δ strain grown under a CO(2) atmosphere, also enabled slow-growth on glucose. Although growth rates of these strains are still low, the higher ATP efficiency of carboxylation via malic enzyme, compared to the pyruvate carboxylase pathway, may contribute to metabolic engineering of S. cerevisiae for anaerobic, high-yield C(4)-dicarboxylic acid production.


Assuntos
Citosol/enzimologia , Engenharia Genética/métodos , Malato Desidrogenase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Anaerobiose , Biotecnologia/métodos , Dióxido de Carbono/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/metabolismo , Malato Desidrogenase/genética , Malatos/metabolismo , Mutação Puntual , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
3.
Appl Environ Microbiol ; 76(16): 5383-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581175

RESUMO

Pyruvate carboxylase is the sole anaplerotic enzyme in glucose-grown cultures of wild-type Saccharomyces cerevisiae. Pyruvate carboxylase-negative (Pyc(-)) S. cerevisiae strains cannot grow on glucose unless media are supplemented with C(4) compounds, such as aspartic acid. In several succinate-producing prokaryotes, phosphoenolpyruvate carboxykinase (PEPCK) fulfills this anaplerotic role. However, the S. cerevisiae PEPCK encoded by PCK1 is repressed by glucose and is considered to have a purely decarboxylating and gluconeogenic function. This study investigates whether and under which conditions PEPCK can replace the anaplerotic function of pyruvate carboxylase in S. cerevisiae. Pyc(-) S. cerevisiae strains constitutively overexpressing the PEPCK either from S. cerevisiae or from Actinobacillus succinogenes did not grow on glucose as the sole carbon source. However, evolutionary engineering yielded mutants able to grow on glucose as the sole carbon source at a maximum specific growth rate of ca. 0.14 h(-1), one-half that of the (pyruvate carboxylase-positive) reference strain grown under the same conditions. Growth was dependent on high carbon dioxide concentrations, indicating that the reaction catalyzed by PEPCK operates near thermodynamic equilibrium. Analysis and reverse engineering of two independently evolved strains showed that single point mutations in pyruvate kinase, which competes with PEPCK for phosphoenolpyruvate, were sufficient to enable the use of PEPCK as the sole anaplerotic enzyme. The PEPCK reaction produces one ATP per carboxylation event, whereas the original route through pyruvate kinase and pyruvate carboxylase is ATP neutral. This increased ATP yield may prove crucial for engineering of efficient and low-cost anaerobic production of C(4) dicarboxylic acids in S. cerevisiae.


Assuntos
Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Saccharomyces cerevisiae/enzimologia , Actinobacillus/enzimologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análise Mutacional de DNA , Deleção de Genes , Glucose/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfoenolpiruvato/metabolismo , Mutação Puntual , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Curr Biol ; 20(4): 328-32, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20096585

RESUMO

Eukaryotic cells employ a suite of replication and mitotic checkpoints to ensure the accurate transmission of their DNA. In budding yeast, both the DNA damage checkpoint and the spindle assembly checkpoint (SAC) block cells prior to anaphase. The presence of a single unrepaired double-strand break (DSB) activates ATR and ATM protein kinase homologs Mec1 and Tel1, which then activate downstream effectors to trigger G2/M arrest and also phosphorylate histone H2A (creating gamma-H2AX) in chromatin surrounding the DSB. The SAC monitors proper attachment of spindle microtubules to the kinetochore formed at each centromere and the biorientation of sister centromeres toward opposite spindle pole bodies. Although these two checkpoints sense quite different perturbations, recent evidence has demonstrated both synergistic interactions and cross-talk between them. Here we report that Mad2 and other SAC proteins play an unexpected role in prolonging G2/M arrest after induction of a single DSB. This function of the SAC depends not only on Mec1 and other components of the DNA damage checkpoint but also on the presence of the centromere located > or = 90 kb from the DNA damage. DNA damage induces epigenetic changes at the centromere, including the gamma-H2AX modification, that appear to alter kinetochore function, thus triggering the canonical SAC. Thus, a single DSB triggers a response by both checkpoints to prevent the segregation of a damaged chromosome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA/fisiologia , Genes cdc , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Dano ao DNA/genética , Histonas/metabolismo , Cinetocoros/metabolismo , Proteínas Mad2 , Fosforilação , Saccharomyces cerevisiae/genética
5.
Genetics ; 178(2): 711-23, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245357

RESUMO

The Mre11 complex functions in double-strand break (DSB) repair, meiotic recombination, and DNA damage checkpoint pathways. Sae2 deficiency has opposing effects on the Mre11 complex. On one hand, it appears to impair Mre11 nuclease function in DNA repair and meiotic DSB processing, and on the other, Sae2 deficiency activates Mre11-complex-dependent DNA-damage-signaling via the Tel1-Mre11 complex (TM) pathway. We demonstrate that SAE2 overexpression blocks the TM pathway, suggesting that Sae2 antagonizes Mre11-complex checkpoint functions. To understand how Sae2 regulates the Mre11 complex, we screened for sae2 alleles that behaved as the null with respect to Mre11-complex checkpoint functions, but left nuclease function intact. Phenotypic characterization of these sae2 alleles suggests that Sae2 functions as a multimer and influences the substrate specificity of the Mre11 nuclease. We show that Sae2 oligomerizes independently of DNA damage and that oligomerization is required for its regulatory influence on the Mre11 nuclease and checkpoint functions.


Assuntos
Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Endonucleases , Deleção de Genes , Genes Fúngicos , Meiose/genética , Metanossulfonato de Metila/farmacologia , Mutagênese , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/efeitos da radiação , Raios Ultravioleta
6.
Annu Rev Genet ; 40: 209-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16805667

RESUMO

In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA de Cadeia Simples/metabolismo , Genes cdc , Humanos , Mitose , Modelos Biológicos , Saccharomycetales/metabolismo , Schizosaccharomyces/metabolismo
7.
Nature ; 439(7075): 497-501, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16299494

RESUMO

One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.


Assuntos
Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA/efeitos da radiação , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 279(4): 2616-22, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14610085

RESUMO

Many environmental stresses trigger cellular responses by activating mitogen-activated protein kinase (MAPK) pathways. Once activated, these highly conserved protein kinase cascades can elicit cellular responses such as transcriptional activation of response genes, cytoskeletal rearrangement, and cell cycle arrest. The mechanism of pathway activation by environmental stresses is in most cases unknown. We have analyzed the activation of the budding yeast "cell integrity" MAPK pathway by heat shock, hypoosmotic shock, and actin perturbation, and we report that different stresses regulate this pathway at different steps. In no case can MAPK activation be explained by the prevailing view that stresses simply induce GTP loading of the Rho1p GTPase at the "top" of the pathway. Instead, our findings suggest that the stresses can modulate at least three distinct kinases acting between Rho1p and the MAPK. These findings suggest that stresses provide "lateral" inputs into this regulatory pathway, rather than operating in a linear "top-down" manner.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas Fúngicas/fisiologia , Temperatura Alta , Pressão Osmótica , Proteínas de Saccharomyces cerevisiae , Estresse Mecânico , Proteínas rho de Ligação ao GTP/fisiologia
9.
Mol Biol Cell ; 13(10): 3560-75, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12388757

RESUMO

Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCF(Met30) acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCF(Met30)) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase , Alelos , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas F-Box , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Fosforilação , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteína-Arginina N-Metiltransferases , Proteínas Tirosina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Temperatura , Técnicas do Sistema de Duplo-Híbrido
10.
EMBO J ; 21(15): 4012-25, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145202

RESUMO

The Saccharomyces cerevisiae morphogenesis checkpoint delays mitosis in response to insults that impair actin organization and/or bud formation. The delay is due to accumulation of the inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. Having screened through a panel of yeast mutants with defects in cell morphogenesis, we report here that the polarity establishment protein Bem2p is required for the checkpoint response. Bem2p is a Rho-GTPase activating protein (GAP) previously shown to act on Rho1p, and we now show that it also acts on Cdc42p, the GTPase primarily responsible for establishment of cell polarity in yeast. Whereas the morphogenesis role of Bem2p required GAP activity, the checkpoint role of Bem2p did not. Instead, this function required an N-terminal Bem2p domain. Thus, this single protein has a GAP-dependent role in promoting cell polarity and a GAP-independent role in responding to defects in cell polarity by enacting the checkpoint. Surprisingly, Swe1p accumulation occurred normally in bem2 cells, but they were nevertheless unable to promote Cdc28p phosphorylation. Therefore, Bem2p defines a novel pathway in the morphogenesis checkpoint.


Assuntos
Proteínas Fúngicas/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Genes cdc , Proteínas Quinases Ativadas por Mitógeno , Proteínas Tirosina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular , Polaridade Celular , Proteínas Fúngicas/genética , Fase G2/genética , Genes Fúngicos , Sistema de Sinalização das MAP Quinases , Metáfase/genética , Dados de Sequência Molecular , Morfogênese/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Reprodução Assexuada , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiazóis/farmacologia , Tiazolidinas , ras-GRF1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...