Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449786

RESUMO

Most desert plants form symbiotic relationships with arbuscular mycorrhizal fungi (AMF), yet fungal identity and impacts on host plants remain largely unknown. Despite widespread recognition of the importance of AMF relationships for plant functioning, we do not know how fungal community structure changes across a desert climate gradient, nor the impacts of different fungal communities on host plant species. Because climate change can shape the distribution of species through effects on species interactions, knowing how the ranges of symbiotic partners are geographically structured and the outcomes of those species interactions informs theory and improves management recommendations. Here we used high throughput sequencing to examine the AMF community of Joshua trees along a climate gradient in Joshua Tree National Park. We then used a range of performance measures and abiotic factors to evaluate how different AMF communities may affect Joshua tree fitness. We found that fungal communities change with elevation resulting in a spectrum of interaction outcomes from mutualism to parasitism that changed with the developmental stage of the plant. Nutrient accumulation and the mycorrhizal growth response of Joshua tree seedlings inoculated with fungi from the lowest (warmest) elevations was first negative, but after 9 months had surpassed that of plants with other fungal treatments. This indicates that low elevation fungi are costly for the plant to initiate symbiosis, yet confer benefits over time. The strong relationship between AMF community and plant growth suggests that variation in AMF community may have long term consequences for plant populations along an elevation gradient.


Assuntos
Micorrizas/fisiologia , Yucca/microbiologia , Yucca/parasitologia , Biodiversidade , Clima , Fungos , Micobioma , Raízes de Plantas/microbiologia , Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Simbiose/fisiologia , Árvores/microbiologia , Yucca/metabolismo
2.
Appl Plant Sci ; 4(12)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101433

RESUMO

PREMISE OF THE STUDY: Field methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes. METHODS AND RESULTS: Living trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness. CONCLUSIONS: Sonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...