Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(7): e0159184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27447834

RESUMO

Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change.


Assuntos
Biodiversidade , Mudança Climática , Dispersão Vegetal , América do Norte , Filogeografia , Chuva , Estações do Ano
2.
Am Nat ; 184(1): 25-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24921598

RESUMO

Life cycles can limit the abilities of species to track changing climatic conditions. We combined age or stage structure and a moving-habitat model to explore the effects of life history on the persistence of populations in the presence of climate change. We studied four dissimilar plant species in moving patches and found that (1) population growth rates, (2) elasticities with respect to the survival (stasis and shrinkage) components of the projection matrix, and (3) the evenness of the elasticities with respect to the components of the projection matrix all decreased as we increased the translational speeds of the patches. In addition, the value of long-distance dispersal increased with patch speed for three of the four species. Our analyses confirm that rapid growth, high fecundity, and long-distance dispersal can benefit species in moving patches. Thus, species with long generation times and limited dispersal ability are especially vulnerable to habitat movement. Stage-structured moving-habitat models can easily incorporate spatial complexity and can help us predict the effects of shifting climatic conditions.


Assuntos
Mudança Climática , Ecossistema , Dipsacaceae , Fertilidade , Modelos Biológicos , Pinus/fisiologia , Dispersão Vegetal , Dinâmica Populacional , Primula/fisiologia
3.
PLoS One ; 9(4): e93241, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691026

RESUMO

Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.


Assuntos
Clima , Florestas , Estações do Ano , Árvores/crescimento & desenvolvimento , Ecossistema , Ilhas , Oceano Pacífico
4.
Ann N Y Acad Sci ; 1297: 112-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23876073

RESUMO

Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts.


Assuntos
Biota , Mudança Climática , Dinâmica Populacional , Adaptação Fisiológica , Animais , Clima , Ecologia , Ecossistema , Geografia , Plantas , Especificidade da Espécie , Simbiose , Washington
5.
Ecol Lett ; 12(10): 1040-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19682007

RESUMO

Treelines are temperature sensitive transition zones that are expected to respond to climate warming by advancing beyond their current position. Response to climate warming over the last century, however, has been mixed, with some treelines showing evidence of recruitment at higher altitudes and/or latitudes (advance) whereas others reveal no marked change in the upper limit of tree establishment. To explore this variation, we analysed a global dataset of 166 sites for which treeline dynamics had been recorded since 1900 AD. Advance was recorded at 52% of sites with only 1% reporting treeline recession. Treelines that experienced strong winter warming were more likely to have advanced, and treelines with a diffuse form were more likely to have advanced than those with an abrupt or krummholz form. Diffuse treelines may be more responsive to warming because they are more strongly growth limited, whereas other treeline forms may be subject to additional constraints.


Assuntos
Geografia , Efeito Estufa , Temperatura , Árvores/fisiologia , Clima , Bases de Dados Factuais , Densidade Demográfica , Dinâmica Populacional , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...