Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440524

RESUMO

SARS-CoV-2 genomic sequencing efforts have scaled dramatically to address the current global pandemic and aid public health. In this work, we analyzed a corpus of 66,000 SARS-CoV-2 genome sequences. We developed a novel semi-supervised pipeline for automated gene, protein, and functional domain annotation of SARS-CoV-2 genomes that differentiates itself by not relying on use of a single reference genome and by overcoming atypical genome traits. Using this method, we identified the comprehensive set of known proteins with 98.5% set membership accuracy and 99.1% accuracy in length prediction compared to proteome references including Replicase polyprotein 1ab (with its transcriptional slippage site). Compared to other published tools such as Prokka (base) and VAPiD, we yielded an 6.4- and 1.8-fold increase in protein annotations. Our method generated 13,000,000 molecular target sequences-- some conserved across time and geography while others represent emerging variants. We observed 3,362 non-redundant sequences per protein on average within this corpus and describe key D614G and N501Y variants spatiotemporally. For spike glycoprotein domains, we achieved greater than 97.9% sequence identity to references and characterized Receptor Binding Domain variants. Here, we comprehensively present the molecular targets to refine biomedical interventions for SARS-CoV-2 with a scalable high-accuracy method to analyze newly sequenced infections.

2.
BMC Pharmacol Toxicol ; 15: 43, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25098735

RESUMO

BACKGROUND: 11ß-hydroxysteroid dehydrogenase type1 (11ß-HSD1) converts inactive glucocorticoids to active glucocorticoids which, in excess, leads to development of the various risk factors of the metabolic syndrome. Recent studies clearly suggest that both increased expression and activity of 11ß-HSD1 in metabolically active tissues such as liver, muscle and adipose are implicated in tissue specific dysregulation which collectively contribute to the whole body pathology seen in metabolic syndrome. In the present study we have evaluated CNX-010-49, a highly potent, selective and 'pan tissue' acting 11ß-HSD1 inhibitor, for its potential to modulate multiple risk factors of the metabolic syndrome. METHODS: Male C57B6/J mice on high fat diet (DIO mice) were orally dosed with CNX-010-49 (30 mg/kg twice daily; n = 8) or vehicle for 10 weeks. Fasting glucose, triglycerides, glycerol, free fatty acids, body weight and feed intake were measured at selected time points. At the end of the treatment an OGTT and subsequently organ histology was performed. In vitro, CNX-010-49 was evaluated in 3T3-L1 preadipocytes to assess impact on adipocytes differentiation, hypertrophy and lipolysis whereas in fully differentiated C2C12 cells and in primary mouse hepatocytes to assess the impact on glucose metabolism and hepatic glucose output respectively. RESULTS: CNX-010-49 a highly potent and selective pan tissue acting 11ß-HSD1 inhibitor (EC50 = 6 nM) significantly inhibits glucocorticoids and isoproterenol mediated lipolysis in mature 3T3-L1 adipocytes, improves muscle glucose oxidation, reduces proteolysis and enhances mitochondrial biogenesis. Also a significant inhibition of gluconeogenesis in primary mouse hepatocytes was observed. The treatment with CNX-010-49 resulted in a significant decrease in fasting glucose, improved insulin sensitivity and glucose tolerance. Treatment also resulted in a significant decrease in serum triglycerides levels and a complete inhibition of body weight gain without affecting feed consumption. A significant reduction in the serum biomarkers like Plasminogen activator inhibitor-1 (PAI-1), interleukin 6 (IL-6) and Fetuin-A with CNX-010-49 treatment was observed indicating a potential to modulate processes implicated in cardiovascular benefits. CONCLUSIONS: These results indicate that inhibition of 11ß-HSD1 with CNX-010-49 can give a potential benefit in the management of metabolic dysregulations that are seen in type 2 diabetes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Peso Corporal/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Hiperglicemia/tratamento farmacológico , Metabolismo dos Lipídeos , Animais , Linhagem Celular , Cricetinae , Cricetulus , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cardiovasc Diabetol ; 13: 27, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24460834

RESUMO

OBJECTIVES: AMP activated protein kinase (AMPK) regulates the coordination of anabolic and catabolic processes and is an attractive therapeutic target for T2DM, obesity and metabolic syndrome. We report the anti-hyperglycemic and anti-hyperlipidemic effects of CNX-012-570 is an orally bioavailable small molecule (molecular weight of 530 Daltons) that directly activates AMPK in DIO and db/db animal models of diabetes. METHODS: Activity and efficacy of the compound was tested in cell based as well as cell free systems in vitro. Male C57BL/6 mice fed with high fat diet (HFD) were assigned to either vehicle or CNX-012-570 (3 mg/kg, orally once a day) for 8 weeks (n = 8). Genetically diabetic db/db mice on chow diet were dosed with vehicle control or CNX-012-570 (2.5 mg/kg, orally once a day) for 6 weeks (n = 8). RESULTS: CNX-012-570 is a highly potent and orally bioavailable compound activating AMPK in both cell and cell free systems. It inhibits lipolysis (33%) and gluconeogenesis (28%) in 3T3L1 cells and rat primary hepatocytes respectively. The efficacy of the molecule was translated to both DIO and db/db animal models of diabetes. CNX-012-570 has reduced fasting blood glucose levels by 14%, body weight by 24% and fasting serum triglycerides (TG) by 24%. CNX-012-570 showed a 22% reduction in fed serum cholesterol levels and 19% increase in HDL levels.In db/db mice model, CNX-012-570 has shown 18% decrease in fed glucose and 32% decrease in fasting glucose with a 2.57% reduction in absolute HbA1c. Decrease in serum insulin and glucose AUC indicates the increased insulin sensitivity. Body weight was reduced by 13% with increased browning of adipose tissue and decreased inguinal and mesenteric fat mass. There was significant reduction in liver TG and liver total cholesterol. CONCLUSIONS: CNX-012-570 has the potential to control hyperglycemia and hyperlipidemia. It also reduces body weight gain with an additional benefit of minimizing cardiovascular risks in diabetics.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal/fisiologia , Índice Glicêmico/fisiologia , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Obesidade/enzimologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Índice Glicêmico/efeitos dos fármacos , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...