Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(1): 380-393, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34905917

RESUMO

In this work, we present a polarizable frozen density embedding (FDE) method for calculating polarizabilities of coupled subsystems. The method (FDE-pol) combines a FDE method with an explicit polarization model such that the expensive freeze/thaw cycles can be bypassed, and approximate nonadditive kinetic potentials are avoided by enforcing external orthogonality between the subsystems. To describe the polarization of the frozen environment, we introduce a Hirshfeld partition-based density-dependent method for calculating the atomic polarizabilities of atoms in molecules, which alleviates the need to fit the atomic parameters to a specific system of interest or to a larger general set of molecules. We show that the Hirshfeld partition-based method predicts molecular polarizabilities close to the basis set limit, and thus, a single basis set-dependent scaling parameter can be introduced to improve the agreement against the reference polarizability data. To test the model, we characterized the uncoupled and coupled response of small interacting molecular complexes. Here, the coupled response properties include the perturbation of the frozen system due to the external perturbation which is ignored in the uncoupled response. We show that FDE-pol can accurately reproduce both the exact uncoupled polarizability and the coupled polarizabilities of the supermolecular systems. Using damped response theory, we also demonstrate that the coupled frequency-dependent polarizability can be described by including local field effects. The results emphasize the necessity of including local-field effects for describing the response properties of coupled subsystems, as well as the importance of accurate atomic polarizability models.

2.
Proc Natl Acad Sci U S A ; 114(12): 3050-3055, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265083

RESUMO

NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...