Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38712820

RESUMO

Blooms of Alexandrium catenella threaten to disrupt subsistence, recreational, and commercial shellfish harvest in Alaska, as the paralytic shellfish toxins (PSTs) produced pose a serious public health risk and can lead to costly shutdowns for shellfish farmers. Current methods of PST detection in the region range from monitoring programs utilizing net tows to detect A. catenella to direct shellfish tissue testing via mouse bioassay (MBA) for commercial aquaculture harvest, as well as various optional testing methods for subsistence and recreational harvesters. The efficacy and feasibility of these methods vary, and they have not been directly compared in Southeast Alaska. In this study, we sought to assess and compare A. catenella and PST early detection methods to determine which can provide the most effective and accurate warning of A. catenella blooms or PST events. We found microscope counts to be variable and prone to missing lower numbers of A. catenella, which may be indicative of bloom formation. However, quantitative polymerase chain reaction (qPCR) significantly correlated with microscope counts and was able to effectively detect even low numbers of A. catenella on all sampling days. Paralytic shellfish toxin concentrations measured by enzyme-linked immunosorbent assay and MBA significantly correlated with each other, qPCR, and some microscope counts. These results show that qPCR is an effective tool for both monitoring A. catenella and serving as a proxy for PSTs. Further work is needed to refine qPCR protocols in this system to provide bloom warnings on an actionable timescale for the aquaculture industry and other shellfish harvesters. Integr Environ Assess Manag 2024;00:1-14. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

2.
Fish Shellfish Immunol ; 58: 449-461, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693202

RESUMO

The xenoestrogen 4-nonylphenol (NP) is a ubiquitous aquatic pollutant and has been shown to impair reproduction, development, growth and, more recently, immune function in marine invertebrates. We investigated the effects of short-term (7 d) exposure to low (2 µg l-1) and high (100 µg l-1) levels of NP on cellular and humoral elements of the innate immune response of Crassostrea gigas to a bacterial challenge. To this end, we measured 1) total hemocyte counts (THC), 2) relative transcript abundance of ten immune-related genes (defh1, defh2, bigdef1, bigdef2, bpi, lysozyme-1, galectin, C-type lectin 2, timp, and transglutaminase) in the hemocytes, gill and mantle, and 3) hemolymph plasma lysozyme activity, following experimental Vibrio campbellii infection. Both low and high levels of NP were found to repress a bacteria-induced increase in THC observed in the control oysters. While several genes were differentially expressed following bacterial introduction (bigdef2, bpi, lysozyme-1, timp, transglutaminase), only two genes (bpi in the hemocytes, transglutaminase in the mantle) exhibited a different bacteria-induced expression profile following NP exposure, relative to the control oysters. Independently of infection-status, exposure to NP also altered mRNA transcript abundance of several genes (bpi, galectin, C-type lectin 2) in naïve, saline-injected oysters. Finally, plasma lysozyme activity levels were significantly higher in low dose NP-treated oysters (both naïve and bacteria challenged) relative to control oysters. Combined, these results suggest that exposure to ecologically-relevant (low) and extreme (high) levels of NP can alter both cellular and humoral elements of the innate immune response in C. gigas, an aquaculture species of global economic importance.


Assuntos
Crassostrea/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fenóis/toxicidade , Vibrio/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Crassostrea/imunologia , Crassostrea/microbiologia , Expressão Gênica , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemolinfa/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...