Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 270: 125562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159354

RESUMO

Vapor detection is a noncontact sampling method, which is a less invasive means of explosives screening than physical swiping. Explosive vapor detection is a challenge due to the low levels of vapors available for detection. This study demonstrates that the parts-per-quadrillion sensitivity of atmospheric flow tube-mass spectrometry (AFT-MS) combined with a high-volume air sampler enables standoff detection of trace explosives vapor at distances of centimeters to meters. Standoff detection of explosives vapor was possible both upstream and downstream of the vapor source relative to room air currents. RDX vapor from a saturated source was detected at up to 2.5 m. Vapors from RDX residue and nitroglycerin residue were detected at distances up to 0.5 m. The sampling can be optimized by accounting for air movement in the room or environment, which could further extend standoff detection distances. Using AFT-MS with a high-volume sampler could also be effective for standoff vapor detection of drugs and additional chemical threats and could be useful for security screening applications such as at mail facilities, border crossings, and security checkpoints.

2.
Analyst ; 147(21): 4888-4894, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36168915

RESUMO

There is a need for non-contact, real-time vapor detection of drugs to combat illicit transportation and help curb the opioid epidemic. The low volatility of drugs, like fentanyl, makes room temperature vapor detection of illicit drugs challenging, but feasible by atmospheric flow tube-mass spectrometry (AFT-MS). AFT-MS is a non-contact vapor detection approach capable of ultra-trace detection of drugs, including fentanyl and its analogs at low parts-per-quadrillion (ppqv) levels. The determination of vapor pressure values of fentanyl is necessary to understand potential vapor concentrations that may be available for detection. In this paper, vapor pressures of fentanyl free base and fentanyl hydrochloride salt (a common form of the illicit drug) were measured as a function of temperature at or near ambient conditions using the transpiration (gas saturation) method and AFT-MS. Based on our measurements, the vapor pressure of fentanyl at 25 °C is 9.0 × 10-14 atm (90 ppqv), and the vapor pressure of fentanyl hydrochloride at 25 °C is 1.8 × 10-17 atm (0.018 ppqv). We also demonstrate non-contact, real-time vapor detection of fentanyl. Preconcentration of vapors can further extend the detection capabilities. The collection, desorption, and detection of fentanyl vapors at ambient conditions was demonstrated for sampling times of seconds to an hour resulting in increased signal. AFT-MS is a viable detection method of fentanyl and other drugs for screening of packages and cargo.


Assuntos
Fentanila , Drogas Ilícitas , Fentanila/análise , Pressão de Vapor , Temperatura , Analgésicos Opioides/análise , Gases
3.
Rapid Commun Mass Spectrom ; 31(18): 1534-1540, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28696545

RESUMO

RATIONALE: The field of highly accurate and precise isotope ratio analysis, for use in nonproliferation, has been dominated by thermal ionization and inductively coupled plasma mass spectrometry. While these techniques are considered the gold standard for isotope ratio analysis, a downsized instrument capable of accurately and precisely measuring uranium (U) isotope ratios is desirable for field studies or in laboratories with limited infrastructure. METHODS: The developed system interfaces the liquid sampling, an atmospheric pressure glow discharge (LS-APGD) ion source, with a high-resolution Exactive Orbitrap mass spectrometer. With this experimental setup certified U isotope standards and unknown samples were analyzed. The accuracy and precision of the system were then determined. RESULTS: The LS-APGD/Exactive instrument measured a certified reference material of natural U (235 U/238 U = 0.007261) with a 235 U/238 U ratio of 0.007065 and a % relative standard uncertainty of 0.082, meeting the International Target Values for the destructive analysis of U. In addition, when three unknowns were measured and these measurements were compared with the results from an ICP multi-collector instrument, there were no statistical differences between the two instruments. CONCLUSIONS: The LS-APGD/Orbitrap system, while still in the preliminary stages of development, offers highly accurate and precise isotope ratio results that suggest a potential paradigm shift in the world of isotope ratio analysis. Furthermore, the portability of the LS-APGD as an elemental ion source, combined with the small size and smaller operating demands of the Orbitrap, suggests that the instrumentation is capable of being field-deployable.

4.
J Am Soc Mass Spectrom ; 27(8): 1393-403, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27080006

RESUMO

In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs. Graphical Abstract ᅟ.

5.
J Biomed Biotechnol ; 2012: 450967, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919270

RESUMO

Recent years have seen an increase in the forensic interest associated with the poison ricin, which is extracted from the seeds of the Ricinus communis plant. Both light element (C, N, O, and H) and strontium (Sr) isotope ratios have previously been used to associate organic material with geographic regions of origin. We present a Bayesian integration methodology that can more accurately predict the region of origin for a castor bean than individual models developed independently for light element stable isotopes or Sr isotope ratios. Our results demonstrate a clear improvement in the ability to correctly classify regions based on the integrated model with a class accuracy of 60.9 ± 2.1% versus 55.9 ± 2.1% and 40.2 ± 1.8% for the light element and strontium (Sr) isotope ratios, respectively. In addition, we show graphically the strengths and weaknesses of each dataset in respect to class prediction and how the integration of these datasets strengthens the overall model.


Assuntos
Geografia , Marcação por Isótopo/métodos , Ricinus communis/metabolismo , Área Sob a Curva , Teorema de Bayes , Brasil , China , Índia , Isótopos , Modelos Biológicos , Curva ROC , Tamanho da Amostra , Isótopos de Estrôncio , Estados Unidos
6.
PLoS One ; 4(4): e5330, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19390698

RESUMO

Human consumers of wildlife killed with lead ammunition may be exposed to health risks associated with lead ingestion. This hypothesis is based on published studies showing elevated blood lead concentrations in subsistence hunter populations, retention of ammunition residues in the tissues of hunter-killed animals, and systemic, cognitive, and behavioral disorders associated with human lead body burdens once considered safe. Our objective was to determine the incidence and bioavailability of lead bullet fragments in hunter-killed venison, a widely-eaten food among hunters and their families. We radiographed 30 eviscerated carcasses of White-tailed Deer (Odocoileus virginianus) shot by hunters with standard lead-core, copper-jacketed bullets under normal hunting conditions. All carcasses showed metal fragments (geometric mean = 136 fragments, range = 15-409) and widespread fragment dispersion. We took each carcass to a separate meat processor and fluoroscopically scanned the resulting meat packages; fluoroscopy revealed metal fragments in the ground meat packages of 24 (80%) of the 30 deer; 32% of 234 ground meat packages contained at least one fragment. Fragments were identified as lead by ICP in 93% of 27 samples. Isotope ratios of lead in meat matched the ratios of bullets, and differed from background lead in bone. We fed fragment-containing venison to four pigs to test bioavailability; four controls received venison without fragments from the same deer. Mean blood lead concentrations in pigs peaked at 2.29 microg/dL (maximum 3.8 microg/dL) 2 days following ingestion of fragment-containing venison, significantly higher than the 0.63 microg/dL averaged by controls. We conclude that people risk exposure to bioavailable lead from bullet fragments when they eat venison from deer killed with standard lead-based rifle bullets and processed under normal procedures. At risk in the U.S. are some ten million hunters, their families, and low-income beneficiaries of venison donations.


Assuntos
Chumbo/análise , Carne/análise , Animais , Animais Selvagens , Cervos/metabolismo , Ingestão de Alimentos , Exposição Ambiental , Monitoramento Ambiental/métodos , Armas de Fogo , Contaminação de Alimentos/análise , Humanos , Intoxicação por Chumbo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...