Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781440

RESUMO

Neurexins and their canonical binding partners, neuroligins, are localized to neuronal pre-, and post-synapses, respectively, but less is known about their role in driving behaviors. Here, we use the nematode C. elegans to show that neurexin, but not neuroligin, is required for avoiding specific chemorepellents. We find that adults with knockouts of the entire neurexin locus exhibit a strong avoidance deficit in response to glycerol and a weaker defect in response to copper. Notably, the C. elegans neurexin (nrx-1) locus, like its mammalian homologs, encodes multiple isoforms, α and γ. Using isoform-specific mutations, we find that the γ isoform is selectively required for glycerol avoidance. Next, we used transgenic rescue experiments to show that this isoform functions at least partially in the nervous system. We also confirm that the transgenes are expressed in the neurons and observe protein accumulation in neurites. Furthermore, we tested whether these mutants affect the behavioral responses of juveniles. We find that juveniles (4th larval stages) of mutants knocking out the entire locus or the α-isoforms, but not γ-isoform, are defective in avoiding glycerol. These results suggest that the different neurexin isoforms affect chemosensory avoidance behavior in juveniles and adults, providing a general principle of how isoforms of this conserved gene affect behavior across species.

2.
iScience ; 27(4): 109477, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38551003

RESUMO

Structural neuroplasticity (changes in the size, strength, number, and targets of synaptic connections) can be modified by sleep and sleep disruption. However, the causal relationships between genetic perturbations, sleep loss, neuroplasticity, and behavior remain unclear. The C. elegans GABAergic DVB neuron undergoes structural plasticity in adult males in response to adolescent stress, which rewires synaptic connections, alters behavior, and is dependent on conserved autism-associated genes NRXN1/nrx-1 and NLGN3/nlg-1. We find that four methods of sleep deprivation transiently induce DVB neurite extension in day 1 adults and increase the time to spicule protraction, which is the functional and behavioral output of the DVB neuron. Loss of nrx-1 and nlg-1 prevent DVB structural plasticity and behavioral changes at day 1 caused by adolescent sleep loss. Therefore, nrx-1 and nlg-1 mediate the morphologic and behavioral consequences of sleep loss, providing insight into the relationship between sleep, neuroplasticity, behavior, and neurologic disease.

3.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106124

RESUMO

Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.

4.
Transl Psychiatry ; 13(1): 367, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036526

RESUMO

Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and ß isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Octopamina/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
5.
Nat Commun ; 14(1): 3672, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37339989

RESUMO

High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.


Assuntos
Caenorhabditis elegans , Neurônios , Animais , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Transcriptoma
6.
Sleep Med Rev ; 62: 101595, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35158305

RESUMO

Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.


Assuntos
Transtorno do Espectro Autista , Transtornos do Sono-Vigília , Animais , Transtorno do Espectro Autista/complicações , Encéfalo , Humanos , Camundongos , Sono , Transtornos do Sono-Vigília/complicações , Peixe-Zebra
7.
Genetics ; 213(4): 1415-1430, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31558583

RESUMO

Neurexins are neuronal adhesion molecules important for synapse maturation, function, and plasticity. Neurexins have been genetically associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia, but can have variable penetrance and phenotypic severity. Heritability studies indicate that a significant percentage of risk for ASD and schizophrenia includes environmental factors, highlighting a poorly understood interplay between genetic and environmental factors. The singular Caenorhabditis elegans ortholog of human neurexins, nrx-1, controls experience-dependent morphologic remodeling of a GABAergic neuron in adult males. Here, I show remodeling of this neuron's morphology in response to each of three environmental stressors (nutritional, heat, or genotoxic stress) when applied specifically during sexual maturation. Increased outgrowth of axon-like neurites following adolescent stress is the result of an altered morphologic plasticity in adulthood. Despite remodeling being induced by each of the three stressors, only nutritional stress affects downstream behavior and is dependent on neurexin/nrx-1 Heat or genotoxic stress in adolescence does not alter behavior despite inducing GABAergic neuron remodeling, in a neurexin/nrx-1 independent fashion. Starvation-induced remodeling is also dependent on neuroligin/nlg-1, the canonical binding partner for neurexin/nrx-1, and the transcription factors FOXO/daf-16 and HSF1/hsf-1hsf-1 and daf-16, in addition, each have unique roles in remodeling induced by heat and UV stress. The differential molecular mechanisms underlying GABAergic neuron remodeling in response to different stressors, and the disparate effects of stressors on downstream behavior, are a paradigm for understanding how genetics, environmental exposures, and plasticity may contribute to brain dysfunction in ASDs and schizophrenia.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios GABAérgicos/fisiologia , Estresse Fisiológico , Envelhecimento/fisiologia , Animais , Masculino , Modelos Biológicos , Crescimento Neuronal , Plasticidade Neuronal , Terminações Pré-Sinápticas/metabolismo
8.
Nature ; 553(7687): 165-170, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29323291

RESUMO

During development and adulthood, brain plasticity is evident at several levels, from synaptic structure and function to the outgrowth of dendrites and axons. Whether and how sex impinges on neuronal plasticity is poorly understood. Here we show that the sex-shared GABA (γ-aminobutyric acid)-releasing DVB neuron in Caenorhabditis elegans displays experience-dependent and sexually dimorphic morphological plasticity, characterized by the stochastic and dynamic addition of multiple neurites in adult males. These added neurites enable synaptic rewiring of the DVB neuron and instruct a functional switch of the neuron that directly modifies a step of male mating behaviour. Both DVB neuron function and male mating behaviour can be altered by experience and by manipulation of postsynaptic activity. The outgrowth of DVB neurites is promoted by presynaptic neurexin and antagonized by postsynaptic neuroligin, revealing a non-conventional activity and mode of interaction of these conserved, human-disease-relevant factors.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios GABAérgicos/metabolismo , Plasticidade Neuronal/fisiologia , Caracteres Sexuais , Animais , Neurônios GABAérgicos/citologia , Organismos Hermafroditas/fisiologia , Masculino , Neuritos/metabolismo , Comportamento Sexual Animal/fisiologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Curr Biol ; 25(24): R1170-2, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702652

RESUMO

Sexual dimorphisms in the neurons and circuits of males and females control sex-specific behaviors that characterize each sex. A recent study describes a pair of newly discovered, male-specific neurons in C. elegans that control a sex-specific learning behavior termed sexual conditioning.


Assuntos
Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal , Animais , Feminino , Aprendizagem/fisiologia , Masculino
10.
Hum Mol Genet ; 24(24): 6886-98, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385636

RESUMO

RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , RNA Mensageiro/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína do X Frágil da Deficiência Intelectual , Técnicas de Silenciamento de Genes , Humanos , Proteínas Associadas aos Microtúbulos/genética , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Neurotoxinas/metabolismo , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Solubilidade , Translocação Genética
11.
J Neurosci ; 32(27): 9133-42, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764223

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease caused by the loss of motor neurons. The degenerating motor neurons of ALS patients are characterized by the accumulation of cytoplasmic inclusions containing phosphorylated and truncated forms of the RNA-binding protein TDP-43. Ataxin 2 intermediate-length polyglutamine (polyQ) expansions were recently identified as a risk factor for ALS; however, the mechanism by which they contribute to disease is unknown. Here, we show that intermediate-length ataxin 2 polyQ expansions enhance stress-induced TDP-43 C-terminal cleavage and phosphorylation in human cells. We also connect intermediate-length ataxin 2 polyQ expansions to the stress-dependent activation of multiple caspases, including caspase 3. Caspase activation is upstream of TDP-43 cleavage and phosphorylation since caspase inhibitors block these pathological modifications. Analysis of the accumulation of activated caspase 3 in motor neurons revealed a striking association with ALS cases harboring ataxin 2 polyQ expansions. These findings indicate that activated caspase 3 defines a new pathological feature of ALS with intermediate-length ataxin 2 polyQ expansions. These results provide mechanistic insight into how ataxin 2 intermediate-length polyQ expansions could contribute to ALS--by enhancing stress-induced TDP-43 pathological modifications via caspase activation. Because longer ataxin 2 polyQ expansions are associated with a different disease, spinocerebellar ataxia 2, these findings help explain how different polyQ expansions in the same protein can have distinct cellular consequences, ultimately resulting in different clinical features. Finally, since caspase inhibitors are effective at reducing TDP-43 pathological modifications, this pathway could be pursued as a therapeutic target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Caspase 3/metabolismo , Expansão das Repetições de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/genética , Peptídeos/genética , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Ataxinas , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Ativação Enzimática/genética , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/química , Cultura Primária de Células , Regulação para Cima/genética
12.
Acta Neuropathol ; 124(2): 221-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526021

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease characterized by degeneration of motor neurons, resulting in paralysis and death. A pathological hallmark of the degenerating motor neurons in most ALS patients is the presence of cytoplasmic inclusions containing the protein TDP-43. The morphology and type of TDP-43 pathological inclusions is variable and can range from large round Lewy body-like inclusions to filamentous skein-like inclusions. The clinical significance of this variable pathology is unclear. Intermediate-length polyglutamine (polyQ) expansions in ataxin 2 were recently identified as a genetic risk factor for ALS. Here we have analyzed TDP-43 pathology in a series of ALS cases with or without ataxin 2 intermediate-length polyQ expansions. The motor neurons of ALS cases harboring ataxin 2 polyQ expansions (n = 6) contained primarily skein-like or filamentous TDP-43 pathology and only rarely, if ever, contained large round inclusions, whereas the ALS cases without ataxin 2 polyQ expansions (n = 13) contained abundant large round and skein-like TDP-43 pathology. The paucity of large round TDP-43 inclusions in ALS cases with ataxin 2 polyQ expansions suggests a distinct pathological subtype of ALS and highlights the possibility for distinct pathogenic mechanisms.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/genética , Peptídeos/genética , Expansão das Repetições de Trinucleotídeos , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Ataxinas , Feminino , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Fatores de Risco
13.
Hum Mol Genet ; 21(13): 2899-911, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454397

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation-prone nature in vitro and in vivo and toxic effects when expressed in multiple model systems. Given these commonalities, we hypothesized that a related protein, EWSR1 (Ewing sarcoma breakpoint region 1), might also exhibit similar properties and therefore could contribute to disease. Here, we report an analysis of EWSR1 in multiple functional assays, including mutational screening in ALS patients and controls. We identified three missense variants in EWSR1 in ALS patients, which were absent in a large number of healthy control individuals. We show that disease-specific variants affect EWSR1 localization in motor neurons. We also provide multiple independent lines of in vitro and in vivo evidence that EWSR1 has similar properties as TDP-43, FUS and TAF15, including aggregation-prone behavior in vitro and ability to confer neurodegeneration in Drosophila. Postmortem analysis of sporadic ALS cases also revealed cytoplasmic mislocalization of EWSR1. Together, our studies highlight a potential role for EWSR1 in ALS, provide a collection of functional assays to be used to assess roles of additional RNA-binding proteins in disease and support an emerging concept that a class of aggregation-prone RNA-binding proteins might contribute broadly to ALS and related neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a Calmodulina/genética , Neurônios Motores/patologia , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a Calmodulina/metabolismo , Células Cultivadas , Criança , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Feminino , Genes Reguladores , Variação Genética , Genótipo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Proteína EWS de Ligação a RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 108(52): 20881-90, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22065782

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery.


Assuntos
Esclerose Lateral Amiotrófica/genética , Neurônios Motores/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Medula Espinal/citologia , Fatores Associados à Proteína de Ligação a TATA/genética , Animais , Células Cultivadas , Biologia Computacional , Drosophila melanogaster/genética , Estudos de Associação Genética/métodos , Humanos , Imuno-Histoquímica , Mutação de Sentido Incorreto/genética , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo
15.
PLoS Biol ; 9(4): e1000614, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21541367

RESUMO

TDP-43 and FUS are RNA-binding proteins that form cytoplasmic inclusions in some forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, mutations in TDP-43 and FUS are linked to ALS and FTLD. However, it is unknown whether TDP-43 and FUS aggregate and cause toxicity by similar mechanisms. Here, we exploit a yeast model and purified FUS to elucidate mechanisms of FUS aggregation and toxicity. Like TDP-43, FUS must aggregate in the cytoplasm and bind RNA to confer toxicity in yeast. These cytoplasmic FUS aggregates partition to stress granule compartments just as they do in ALS patients. Importantly, in isolation, FUS spontaneously forms pore-like oligomers and filamentous structures reminiscent of FUS inclusions in ALS patients. FUS aggregation and toxicity requires a prion-like domain, but unlike TDP-43, additional determinants within a RGG domain are critical for FUS aggregation and toxicity. In further distinction to TDP-43, ALS-linked FUS mutations do not promote aggregation. Finally, genome-wide screens uncovered stress granule assembly and RNA metabolism genes that modify FUS toxicity but not TDP-43 toxicity. Our findings suggest that TDP-43 and FUS, though similar RNA-binding proteins, aggregate and confer disease phenotypes via distinct mechanisms. These differences will likely have important therapeutic implications.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Neurônios/patologia , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/patologia , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/toxicidade , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Deleção de Genes , Expressão Gênica , Células HEK293 , Humanos , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/toxicidade , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfecção
16.
Mol Biol Cell ; 22(12): 1971-84, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21508314

RESUMO

Nine human disorders result from the toxic accumulation and aggregation of proteins with expansions in their endogenous polyalanine (polyA) tracts. Given the prevalence of polyA tracts in eukaryotic proteomes, we wanted to understand the generality of polyA-expansion cytotoxicity by using yeast as a model organism. In our initial case, we expanded the polyA tract within the native yeast poly(Adenine)-binding protein Pab1 from 8A to 13A, 15A, 17A, and 20A. These expansions resulted in increasing formation of Pab1 inclusions, insolubility, and cytotoxicity that correlated with the length of the polyA expansion. Pab1 binds mRNA as part of its normal function, and disrupting RNA binding or altering cytoplasmic mRNA levels suppressed the cytotoxicity of 17A-expanded Pab1, indicating a requisite role for mRNA in Pab1 polyA-expansion toxicity. Surprisingly, neither manipulation suppressed the cytotoxicity of 20A-expanded Pab1. Thus longer expansions may have a different mechanism for toxicity. We think that this difference underscores the potential need to examine the cytotoxic mechanisms of both long and short expansions in models of expansion disorders.


Assuntos
Expansão das Repetições de DNA , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Agregação Celular , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Peptídeos/química , Fosfoproteínas/metabolismo , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/metabolismo , Proteoma , RNA Polimerase II/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
17.
Methods ; 53(3): 238-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21115123

RESUMO

The budding yeast Saccharomyces cerevisiae is an emerging tool for investigating the molecular pathways that underpin several human neurodegenerative disorders associated with protein misfolding. Amyotrophic lateral sclerosis (ALS) is a devastating adult onset neurodegenerative disease primarily affecting motor neurons. The protein TDP-43 has recently been demonstrated to play an important role in the disease, however, the mechanisms by which TDP-43 contributes to pathogenesis are unclear. To explore the mechanistic details that result in aberrant accumulation of TDP-43 and to discover potential strategies for therapeutic intervention, we employed a yeast TDP-43 proteinopathy model system. These studies allowed us to determine the regions of TDP-43 required for aggregation and toxicity and to define the effects of ALS-linked mutant forms of TDP-43. We have also been able to harness the power of yeast genetics to identify potent modifiers of TDP-43 toxicity using high-throughput yeast genetic screens. Here, we describe the methods and approaches that we have used in order to gain insight into TDP-43 biology and its role in disease. These approaches are readily adaptable to other neurodegenerative disease proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/patologia , Deleção de Genes , Testes Genéticos , Humanos , Corpos de Inclusão/metabolismo , Mutação de Sentido Incorreto , Organismos Geneticamente Modificados , Doença de Parkinson/patologia , Doenças Priônicas/patologia , Dobramento de Proteína
18.
Nature ; 466(7310): 1069-75, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20740007

RESUMO

The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27-33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43-ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Sequências Repetitivas de Aminoácidos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Ataxinas , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/toxicidade , Drosophila/efeitos dos fármacos , Drosophila/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Peptídeos/química , Fatores de Risco , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...