Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 48(5): 1234-1246, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31589721

RESUMO

Unnecessary accumulation of phosphorus (P) in agricultural soils continues to degrade water quality and linked ecosystem services. Managing both soil loss and soil P fertility status is therefore crucial for eutrophication control, but the relative environmental benefits of these two mitigation measures, and the timescales over which they occur, remain unclear. To support policies toward reduced P loadings from agricultural soils, we examined the impact of soil conservation and lowering of soil test P (STP) in different regions with intensive farming (Europe, the United States, and Australia). Relationships between STP and soluble reactive P concentrations in land runoff suggested that eutrophication control targets would be more achievable if STP concentrations were kept at or below the current recommended threshold values for fertilizer response. Simulations using the Annual P Loss Estimator (APLE) model in three contrasting catchments predicted total P losses ranging from 0.52 to 0.88 kg ha depending on soil P buffering and erosion vulnerability. Drawing down STP in all catchment soils to the threshold optimum for productivity reduced catchment P loss by between 18 and 40%, but this would take between 30 and 40+ years. In one catchment, STP drawdown was more effective in reducing P loss than erosion control, but combining both strategies was always the most effective and more rapid than erosion control alone. By accounting for both soil P buffering interactions and erosion vulnerability, the APLE model quickly provided reliable information on the magnitude and time frame of P loss reduction that can be realistically expected from soil and STP management. Greater precision in the sampling, analysis, and interpretation of STP, and more technical innovation to lower agronomic optimum STP concentrations on farms, is needed to foster long-term sustainable management of soil P fertility in the future.


Assuntos
Fósforo , Solo , Agricultura , Austrália , Ecossistema , Eutrofização
2.
J Environ Qual ; 33(6): 1954-72, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15537918

RESUMO

Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.


Assuntos
Agricultura , Fertilizantes , Fósforo/análise , Poluentes da Água/análise , Monitoramento Ambiental , Chuva , Movimentos da Água , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...