Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 855, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787299

RESUMO

Open physical systems with balanced loss and gain, described by non-Hermitian parity-time [Formula: see text] reflection symmetric Hamiltonians, exhibit a transition which could engender modes that exponentially decay or grow with time, and thus spontaneously breaks the [Formula: see text]-symmetry. Such [Formula: see text]-symmetry-breaking transitions have attracted many interests because of their extraordinary behaviors and functionalities absent in closed systems. Here we report on the observation of [Formula: see text]-symmetry-breaking transitions by engineering time-periodic dissipation and coupling, which are realized through state-dependent atom loss in an optical dipole trap of ultracold 6Li atoms. Comparing with a single transition appearing for static dissipation, the time-periodic counterpart undergoes [Formula: see text]-symmetry breaking and restoring transitions at vanishingly small dissipation strength in both single and multiphoton transition domains, revealing rich phase structures associated to a Floquet open system. The results enable ultracold atoms to be a versatile tool for studying [Formula: see text]-symmetric quantum systems.

2.
Sci Rep ; 8(1): 12065, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104570

RESUMO

Quantum walks often provide telling insights about the structure of the system on which they are performed. In [Formula: see text]-symmetric and lossy dimer lattices, the topological properties of the band structure manifest themselves in the quantization of the mean displacement of such a walker. We investigate the fragile aspects of a topological transition in these two dimer models. We find that the transition is sensitive to the initial state of the walker on the Bloch sphere, and the resultant mean displacement has a robust topological component and a quasiclassical component. In [Formula: see text] symmetric dimer lattices, we also show that the transition is smeared by nonlinear effects that become important in the [Formula: see text]-symmetry broken region. By carrying out consistency checks via analytical calculations, tight-binding results, and beam-propagation-method simulations, we show that our predictions are easily testable in today's experimental systems.

3.
Sci Rep ; 8(1): 44, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311749

RESUMO

Open, non-equilibrium systems with balanced gain and loss, known as parity-time ([Formula: see text])-symmetric systems, exhibit properties that are absent in closed, isolated systems. A key property is the [Formula: see text]-symmetry breaking transition, which occurs when the gain-loss strength, a measure of the openness of the system, exceeds the intrinsic energy-scale of the system. We analyze the fate of this transition in disordered lattices with non-Hermitian gain and loss potentials ±iγ at reflection-symmetric sites. Contrary to the popular belief, we show that the [Formula: see text]-symmetric phase is protected in the presence of a periodic disorder which leads to a positive [Formula: see text]-symmetry breaking threshold. We uncover a veiled symmetry of such disordered systems that is instrumental for the said protection, and show that this symmetry leads to new localization behavior across the [Formula: see text]-symmetry breaking transition. We elucidate the interplay between such localization and the [Formula: see text]-symmetry breaking phenomena in disordered [Formula: see text]-symmetric lattices, with Hermitian disorder or gain-loss disorder, and support our conclusions with a beampropagation- method analysis. Our theoretical predictions provide avenues for experimental realizations of -symmetric systems with engineered disorder.

4.
J Biomol Struct Dyn ; 30(6): 628-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22731517

RESUMO

Thermodynamic stability of a protein at elevated temperatures is a key factor for thermostable enzymes to catalyze their specific reactions. Yet our understanding of biological determinants of thermostability is far from complete. Many different atomistic factors have been suggested as possible means for such proteins to preserve their activity at high temperatures. Among these factors are specific local interatomic interactions or enrichment of specific amino acid types. The case of glycosyl hydrolase family endoglucanase of Trichoderma reesei defies current hypotheses for thermostability because a single mutation far from the active site (A35 V) converts this mesostable protein into a thermostable protein without significant change in the protein structure. This substantial change in enzymatic activity cannot be explained on the basis of local intramolecular interactions alone. Here we present a more global view of the induced thermostability and show that the A35 V mutation affects the underlying structural rigidity of the whole protein via a number of long-range, non-local interactions. Our analysis of this structure reveals a precisely tuned, rigid network of atomic interactions. This cooperative, allosteric effect promotes the transformation of this mesostable protein into a thermostable one.


Assuntos
Celulase/química , Proteínas Fúngicas/química , Proteínas Mutantes/química , Trichoderma/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Celulase/genética , Simulação por Computador , Estabilidade Enzimática , Proteínas Fúngicas/genética , Ligação de Hidrogênio , Modelos Moleculares , Proteínas Mutantes/genética , Desnaturação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...