Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 25(8): 1415-1427, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36705543

RESUMO

BACKGROUND: The lack of murine glioblastoma models that mimic the immunobiology of human disease has impeded basic and translational immunology research. We, therefore, developed murine glioblastoma stem cell lines derived from Nestin-CreERT2QkL/L; Trp53L/L; PtenL/L (QPP) mice driven by clinically relevant genetic mutations common in human glioblastoma. This study aims to determine the immune sensitivities of these QPP lines in immunocompetent hosts and their underlying mechanisms. METHODS: The differential responsiveness of QPP lines was assessed in the brain and flank in untreated, anti-PD-1, or anti-CTLA-4 treated mice. The impact of genomic landscape on the responsiveness of each tumor was measured through whole exome sequencing. The immune microenvironments of sensitive (QPP7) versus resistant (QPP8) lines were compared in the brain using flow cytometry. Drivers of flank sensitivity versus brain resistance were also measured for QPP8. RESULTS: QPP lines are syngeneic to C57BL/6J mice and demonstrate varied sensitivities to T cell immune checkpoint blockade ranging from curative responses to complete resistance. Infiltrating tumor immune analysis of QPP8 reveals improved T cell fitness and augmented effector-to-suppressor ratios when implanted subcutaneously (sensitive), which are absent on implantation in the brain (resistant). Upregulation of PD-L1 across the myeloid stroma acts to establish this state of immune privilege in the brain. In contrast, QPP7 responds to checkpoint immunotherapy even in the brain likely resulting from its elevated neoantigen burden. CONCLUSIONS: These syngeneic QPP models of glioblastoma demonstrate clinically relevant profiles of immunotherapeutic sensitivity and potential utility for both mechanistic discovery and evaluation of immune therapies.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Camundongos Endogâmicos C57BL , Imunoterapia/métodos , Linfócitos T/metabolismo , Microambiente Tumoral
2.
Cancer Immunol Res ; 6(10): 1260-1273, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30012633

RESUMO

Tumor-associated macrophages (TAMs) express programmed cell death ligand 1 (PD-L1) and contribute to the immune-suppressive tumor microenvironment. Although the role of the PD-L1 and PD-1 interaction to regulate T-cell suppression is established, less is known about PD-L1 signaling in macrophages and how these signals may affect the function of TAMs. We used in vitro and in vivo models to investigate PD-L1 signaling in macrophages and the effects of PD-L1 antibody treatment on TAM responses. Treatment of mouse and human macrophages with PD-L1 antibodies increased spontaneous macrophage proliferation, survival, and activation (costimulatory molecule expression, cytokine production). Similar changes were observed in macrophages incubated with soluble CD80 and soluble PD-1, and in PD-L1-/- macrophages. Macrophage treatment with PD-L1 antibodies upregulated mTOR pathway activity, and RNAseq analysis revealed upregulation of multiple macrophage inflammatory pathways. In vivo, treatment with PD-L1 antibody resulted in increased tumor infiltration with activated macrophages. In tumor-bearing RAG-/- mice, upregulated costimulatory molecule expression by TAMs and reduced tumor growth were observed. Combined PD-1/ PD-L1 antibody treatment of animals with established B16 melanomas cured half of the treated mice, whereas treatment with single antibodies had little therapeutic effect. These findings indicate that PD-L1 delivers a constitutive negative signal to macrophages, resulting in an immune-suppressive cell phenotype. Treatment with PD-L1 antibodies reverses this phenotype and triggers macrophage-mediated antitumor activity, suggesting a distinct effect of PD-L1, but not PD-1, antibody treatment. Cancer Immunol Res; 6(10); 1260-73. ©2018 AACR.


Assuntos
Antígeno B7-H1/imunologia , Macrófagos/imunologia , Melanoma Experimental/imunologia , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Proliferação de Células , Células Cultivadas , Humanos , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...