Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(16): 8927-8938, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053448

RESUMO

The activation of chalcogen-chalcogen bonds using organometallic uranium complexes has been well documented for S-S, Se-Se, and Te-Te bonds. In stark contrast, reports concerning the ability of a uranium complex to activate the O-O bond of an organic peroxide are exceedingly rare. Herein, we describe the peroxide O-O bond cleavage of 9,10-diphenylanthracene-9,10-endoperoxide in nonaqueous media, mediated by a uranium(III) precursor [((Me,AdArO)3N)UIII(dme)] to generate a stable uranium(V) bis-alkoxide complex, namely, [((Me,AdArO)3N)UV(DPAP)]. This reaction proceeds via an isolable, alkoxide-bridged diuranium(IV/IV) species, implying that the oxidative addition occurs in two sequential, single-electron oxidations of the metal center, including rebound of a terminal oxygen radical. This uranium(V) bis-alkoxide can then be reduced with KC8 to form a uranium(IV) complex, which upon exposure to UV light, in solution, releases 9,10-diphenylanthracene to generate a cyclic uranyl trimer through formal two-electron photooxidation. Analysis of the mechanism of this photochemical oxidation via density functional theory (DFT) calculations indicates that the formation of this uranyl trimer occurs through a fleeting uranium cis-dioxo intermediate. At room temperature, this cis-configured dioxo species rapidly isomerizes to a more stable trans configuration through the release of one of the alkoxide ligands from the complex, which then goes on to form the isolated uranyl trimer complex.

2.
Inorg Chem ; 62(5): 2013-2023, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693018

RESUMO

Transmetalation of potassium salts of differently substituted acetylacetonate (acac) and ß-ketoiminate (acnac) with [U(I)3(dioxane)1.5] and [U(I)4(dioxane)2] resulted in the formation of homoleptic, octahedral complexes [U(tBuacnacPh)3] (with tBuacnacPh = 2,2,6,6-tetramethyl-5-(phenylimino)heptan-3-onate) in the oxidation states +III and +IV and the homoleptic, square prismatic complexes [UIV(MeacnacPh)4] (with MeacnacPh = 4-(phenylimino)pentan-2-onate) and the homoleptic, square antiprismatic complexes [U(tBuacac)4] [with acac = 2,2,6,6-tetramethyl-3,5-heptanedionate (tBuacac), 2,2,6,6-tetramethyl,4-methyl-3,5-heptanedionate (tBuacMeac), and 2,2,6,6-tetramethyl-4-phenyl-3,5-heptanedionate (tBuacPhac)] in oxidation states +III, +IV, and +V. Oxidation of [UIII(tBuacnacPh)3] (1) with AgOTf yielded [UIV(tBuacnacPh)3][OTf] (2), which was fully characterized by single-crystal X-ray diffraction analysis, a combination of ultraviolet/visible/near-infrared, nuclear magnetic resonance, and infrared spectroscopies, and solid-state superconducting quantum interference device magnetization studies. Complexation of the sterically less encumbering ligand derivative MeacnacPh provided access to the tetravalent, square antiprismatic complex [UIV(MeacnacPh)4] (3). Cyclovoltammetric analysis of the square antiprismatic [UIV(tBuacac)4] (4), [UIV(tBuacMeac)4] (5), and [UIV(tBuacPhac)4] (6) revealed reversible anodic and cathodic waves, attributable to the U(III/IV) and U(IV/V) redox couples, both being chemically accessible, as tested in the case of 5. The corresponding U(III) and U(V) compounds, [K(2.2.2-cryptand)][UIII(tBuacMeac)4] (7) and [UV(tBuacMeac)4][SbF6] (8), were synthesized accordingly. Unfortunately, reduced 7 proved to be too reactive for isolation and could only be detected by electron paramagnetic resonance spectroscopy. Notably, electrochemical studies on homoleptic uranium(IV) complexes with differently derivatized (R) acRac ligands (R = H, Me, or Ph) feature large electrochemical windows of up to 2.91 V, measured between the uranium(III) and the uranium(V) species, in addition to high stability toward repeated potential scans.

3.
JACS Au ; 1(6): 698-709, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34467327

RESUMO

Catalysis remains one of the final frontiers in molecular uranium chemistry. Depleted uranium is mildly radioactive, continuously generated in large quantities from the production and consumption of nuclear fuels and accessible through the regeneration of "uranium waste". Organometallic complexes of uranium possess a number of properties that are appealing for applications in homogeneous catalysis. Uranium exists in a wide range of oxidation states, and its large ionic radii support chelating ligands with high coordination numbers resulting in increased complex stability. Its position within the actinide series allows it to involve its f-orbitals in partial covalent bonding; yet, the U-L bonds remain highly polarized. This causes these bonds to be reactive and, with few exceptions, relatively weak, allowing for high substrate on/off rates. Thus, it is reasonable that uranium could be considered as a source of metal catalysts. Accordingly, uranium complexes in oxidation states +4, +5, and +6 have been studied extensively as catalysts in sigma-bond metathesis reactions, with a body of literature spanning the past 40 years. High-valent species have been documented to perform a wide variety of reactions, including oligomerization, hydrogenation, and hydrosilylation. Concurrently, electron-rich uranium complexes in oxidation states +2 and +3 have been proven capable of performing reductive small molecule activation of N2, CO2, CO, and H2O. Hence, uranium's ability to activate small molecules of biological and industrial relevance is particularly pertinent when looking toward a sustainable future, especially due to its promising ability to generate ammonia, molecular hydrogen, and liquid hydrocarbons, though the advance of catalysis in these areas is in the early stages of development. In this Perspective, we will look at the challenges associated with the advance of new uranium catalysts, the tools produced to combat these challenges, the triumphs in achieving uranium catalysis, and our future outlook on the topic.

4.
J Am Chem Soc ; 139(39): 13672-13675, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28918626

RESUMO

Single bonds between carbon atoms are inherently challenging to activate using transition metals; however, ring-strain release can provide the necessary thermodynamic driving force to make such processes favorable. In this report, we describe a strain-induced C-C oxidative addition of norbornadiene. The reaction is mediated by a dinuclear Ni complex, which also serves as a catalyst for the carbonylative rearrangement of norbornadiene to form a bicyclo[3.3.0] product.

5.
Dalton Trans ; 46(17): 5493-5497, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27996067

RESUMO

A family of low-valent Ni2, Co2, and Fe2 naphthyridine-diimine (NDI) complexes is presented. Ligand-based π* orbitals are sufficiently low-lying to fall within the metal 3d manifold, resulting in electronic structures that are highly delocalized across the conjugated [NDI]M2 system. This feature confers stability to metal-metal interactions during two-electron redox reactions, as demonstrated in a prototypical oxidative addition of allyl chloride.

6.
Angew Chem Int Ed Engl ; 55(20): 6084-7, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27062313

RESUMO

The mechanism of the Pauson-Khand reaction has attracted significant interest due to the unusual dinuclear nature of the Co2 (CO)x active site. Experimental and computational data have indicated that the intermediates following the initial Co2 (CO)6 (alkyne) complex are thermodynamically unstable and do not build up in appreciable concentrations during the course of the reaction. As a consequence, the key steps that control the scope of viable substrates and various aspects of selectivity have remained largely uncharacterized. Herein, a direct experimental investigation of the dinuclear metallacycle-forming step of the Pauson-Khand reaction is reported. These studies capitalize on well-defined d(9) -d(9) dinickel complexes supported by a naphthyridine-diimine (NDI) pincer ligand as functional surrogates of Co2 (CO)8 .

7.
Inorg Chem ; 53(21): 11770-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25337719

RESUMO

Redox-active nitrogen donor ligands have exhibited broad utility in stabilizing transition metal complexes in unusual formal oxidation states and enabling multielectron redox reactions. In this report, we extend these principles to dinuclear complexes using a naphthyridine-diimine (NDI) framework. Treatment of ((i-Pr)NDI) with Ni(COD)2 (2.0 equiv) yields a Ni(I)-Ni(I) complex in which the two metal centers form a single bond and the ((i-Pr)NDI) ligand is doubly reduced. A homologous series of ((i-Pr)NDI)Ni2 complexes in five oxidation states were synthesized and structurally characterized. Across this series, the ligand ranges from a neutral state in the most oxidized member to a dianionic state in the most reduced. The interplay between metal- and ligand-centered redox activity is interrogated using a variety of experimental techniques in combination with density functional theory models.

8.
Chem Commun (Camb) ; 49(44): 5040-2, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23620277

RESUMO

A method for the synthesis of α-amino acids by direct reductive carboxylation of aromatic imines with CO2 is described. The protocol employs readily available commercial reagents and serves as a one-step alternative to the Strecker synthesis.


Assuntos
Aminoácidos/síntese química , Dióxido de Carbono/química , Iminas/química , Aminoácidos/química , Magnésio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...