Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(5): 1098-1106.e5, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38218184

RESUMO

Visual shape perception is central to many everyday tasks, from object recognition to grasping and handling tools.1,2,3,4,5,6,7,8,9,10 Yet how shape is encoded in the visual system remains poorly understood. Here, we probed shape representations using visual aftereffects-perceptual distortions that occur following extended exposure to a stimulus.11,12,13,14,15,16,17 Such effects are thought to be caused by adaptation in neural populations that encode both simple, low-level stimulus characteristics17,18,19,20 and more abstract, high-level object features.21,22,23 To tease these two contributions apart, we used machine-learning methods to synthesize novel shapes in a multidimensional shape space, derived from a large database of natural shapes.24 Stimuli were carefully selected such that low-level and high-level adaptation models made distinct predictions about the shapes that observers would perceive following adaptation. We found that adaptation along vector trajectories in the high-level shape space predicted shape aftereffects better than simple low-level processes. Our findings reveal the central role of high-level statistical features in the visual representation of shape. The findings also hint that human vision is attuned to the distribution of shapes experienced in the natural environment.


Assuntos
Visão Ocular , Percepção Visual , Humanos , Distorção da Percepção , Meio Ambiente , Reconhecimento Visual de Modelos , Estimulação Luminosa
2.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154551

RESUMO

To grasp an object successfully, we must select appropriate contact regions for our hands on the surface of the object. However, identifying such regions is challenging. This paper describes a workflow to estimate the contact regions from marker-based tracking data. Participants grasp real objects, while we track the 3D position of both the objects and the hand, including the fingers' joints. We first determine the joint Euler angles from a selection of tracked markers positioned on the back of the hand. Then, we use state-of-the-art hand mesh reconstruction algorithms to generate a mesh model of the participant's hand in the current pose and the 3D position. Using objects that were either 3D printed or 3D scanned-and are, thus, available as both real objects and mesh data-allows the hand and object meshes to be co-registered. In turn, this allows the estimation of approximate contact regions by calculating the intersections between the hand mesh and the co-registered 3D object mesh. The method may be used to estimate where and how humans grasp objects under a variety of conditions. Therefore, the method could be of interest to researchers studying visual and haptic perception, motor control, human-computer interaction in virtual and augmented reality, and robotics.


Assuntos
Mãos , Robótica , Humanos , Força da Mão
3.
Curr Biol ; 32(21): R1224-R1225, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347228

RESUMO

The discovery of mental rotation was one of the most significant landmarks in experimental psychology, leading to the ongoing assumption that to visually compare objects from different three-dimensional viewpoints, we use explicit internal simulations of object rotations, to 'mentally adjust' one object until it matches the other1. These rotations are thought to be performed on three-dimensional representations of the object, by literal analogy to physical rotations. In particular, it is thought that an imagined object is continuously adjusted at a constant three-dimensional angular rotation rate from its initial orientation to the final orientation through all intervening viewpoints2. While qualitative theories have tried to account for this phenomenon3, to date there has been no explicit, image-computable model of the underlying processes. As a result, there is no quantitative account of why some object viewpoints appear more similar to one another than others when the three-dimensional angular difference between them is the same4,5. We reasoned that the specific pattern of non-uniformities in the perception of viewpoints can reveal the visual computations underlying mental rotation. We therefore compared human viewpoint perception with a model based on the kind of two-dimensional 'optical flow' computations that are thought to underlie motion perception in biological vision6, finding that the model reproduces the specific errors that participants make. This suggests that mental rotation involves simulating the two-dimensional retinal image change that would occur when rotating objects. When we compare objects, we do not do so in a distal three-dimensional representation as previously assumed, but by measuring how much the proximal stimulus would change if we watched the object rotate, capturing perspectival appearance changes7.


Assuntos
Percepção de Movimento , Fluxo Óptico , Humanos , Reconhecimento Visual de Modelos , Percepção Visual
4.
PLoS Comput Biol ; 17(6): e1008981, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061825

RESUMO

Shape is a defining feature of objects, and human observers can effortlessly compare shapes to determine how similar they are. Yet, to date, no image-computable model can predict how visually similar or different shapes appear. Such a model would be an invaluable tool for neuroscientists and could provide insights into computations underlying human shape perception. To address this need, we developed a model ('ShapeComp'), based on over 100 shape features (e.g., area, compactness, Fourier descriptors). When trained to capture the variance in a database of >25,000 animal silhouettes, ShapeComp accurately predicts human shape similarity judgments between pairs of shapes without fitting any parameters to human data. To test the model, we created carefully selected arrays of complex novel shapes using a Generative Adversarial Network trained on the animal silhouettes, which we presented to observers in a wide range of tasks. Our findings show that incorporating multiple ShapeComp dimensions facilitates the prediction of human shape similarity across a small number of shapes, and also captures much of the variance in the multiple arrangements of many shapes. ShapeComp outperforms both conventional pixel-based metrics and state-of-the-art convolutional neural networks, and can also be used to generate perceptually uniform stimulus sets, making it a powerful tool for investigating shape and object representations in the human brain.


Assuntos
Biologia Computacional/métodos , Reconhecimento Visual de Modelos , Animais , Humanos , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...