Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Intervent Radiol ; 44(8): 1260-1265, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33987693

RESUMO

PURPOSE: This work was designed to study the effectiveness of radiation protection caps in lowering the dose to the brain and the eye lens during fluoroscopically guided interventions. MATERIALS AND METHODS: Two types of radiation protection caps were examined with regards to their capacity to lower the radiation dose. One cap is equipped with lateral flaps, the other one is not. These caps were fitted to the head of an anthropomorphic Alderson-Rando (A.-R.) phantom. The phantom was positioned aside an angiographic table simulating the position of the first operator during a peripheral arterial intervention. One of the brain slices and both eyes of the A.-R. phantom were equipped with thermoluminescence dosimeters (TLDs). RESULTS: The analysis of the data showed that the cap without lateral flaps reduced the dose to the brain by 11,5-27,5 percent depending on the position within the brain. The cap with lateral protection flaps achieved a shielding effect between 44,7 and 78,9 percent. When evaluating the dose to the eye, we did see an increase of dose reduction from 63,3 to 66,5 percent in the left eye and from 45,8 to 46,8 percent in the right eye for the cap without lateral protection. When wearing the cap with lateral protection we observed an increase of dose reduction from 63,4 to 67,2 percent in the left eye and from 45,8 to 50,0 percent in the right eye. CONCLUSION: Radiation protection caps can be an effective tool to reduce the dose to the brain and the eyes.


Assuntos
Encéfalo/diagnóstico por imagem , Cristalino/diagnóstico por imagem , Doses de Radiação , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Radiografia Intervencionista/métodos , Fluoroscopia , Humanos , Imagens de Fantasmas , Dosimetria Termoluminescente
3.
J Endourol ; 32(10): 897-903, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29901404

RESUMO

BACKGROUND: Due to new radiobiologic data, the International Commission on Radiological Protection recommends a dose limit of 20 mSv per year to the eye lens. Therefore, the IAEA International Basic Safety Standard and the European council directive 2013/59/EURATOM require a reduction of the annual dose limit from 150 to 20 mSv. Urologists are exposed to an elevated radiation exposure in the head region during fluoroscopic interventions, due to the commonly used overtable X-ray tubes and the rarely used radiation protection for the head. Aim of the study was to analyze real radiation exposure to the eye lens of the urologist during various interventions, during which the patient is in the lithotomy position. MATERIALS AND METHODS: The partial body doses (forehead and apron collar) of the urologists and surgical staff were measured over a period of 2 months. 95 interventions were performed on Uroskop Omnia Max workplaces (Siemens Healthineers, Erlangen, Germany). Interventions were class-divided in less (stage I) and more complex (stage II) interventions. Two dosimeter-types were applied, well-calibrated electronic personal dosimeter Mk2 and self-calibrated thermoluminescent dosimeter-100H (both Thermo Fisher Scientific, Waltham, MA). The radiation exposure parameters were documented using the dose area product (DAP) and the fluoroscopy time. RESULTS: The correlation between DAP and the apron dose of the urologist was in average 0.07 µSv per 1 µGym2. The more experienced urologists yielded a mean DAP of 166 µGym2 for stage I and 415 µGym2 for stage II procedures. The interventionist was exposed with 10 µSv in mean outside the lead apron collar. The mean dose value of the eye lenses per intervention was ascertained to 20 µSv (mean DAP: 233 µGym2). CONCLUSIONS: The study setup allows a differentiated and time-resolved measurement of the radiation exposure, which was found heterogeneous depending on intervention and surgeon. In this setting, ∼1000 interventions can be performed until the annual eye lens dose limit is achieved.


Assuntos
Catarata/etiologia , Fluoroscopia/efeitos adversos , Exposição Ocupacional/prevenção & controle , Exposição à Radiação/prevenção & controle , Lesões por Radiação/prevenção & controle , Alemanha , Humanos , Proteção Radiológica/métodos , Dosimetria Termoluminescente , Procedimentos Cirúrgicos Urológicos/métodos
4.
Phys Med Biol ; 62(11): 4479-4495, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480870

RESUMO

The aim of this study was to systematically investigate the influence of the inter- and intra-observer segmentation variation of tumors and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and the bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as the hyperthermia target volumes. For intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively, were assessed for each observer combination. The results of the segmentation similarity evaluation showed that the DSC of the inter-observer variation of fat, muscle, the bladder, bone and the target was 0.68 ± 0.12, 0.88 ± 0.05, 0.73 ± 0.14, 0.91 ± 0.04 and 0.64 ± 0.11, respectively. Similar results were found for the intra-observer variation. The MSD results were similar to the DSCs for both observer variations. A statistically significant difference (p < 0.05) was found for T90 and T10 in the predicted target temperature due to the observer variability. The conclusion is that intra- and inter-observer variations have a significant impact on the temperature coverage of the target. Furthermore, OARs, such as bone and the bladder, may essentially influence the homogeneity of the simulated target temperature distribution.

5.
Phys Med Biol ; 62(12): 4929-4945, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28531088

RESUMO

Patient positioning plays an important role in regional deep hyperthermia to obtain a successful hyperthermia treatment. In this study, the influence of possible patient mispositioning was systematically assessed on specific absorption rate (SAR) and temperature distribution. With a finite difference time domain approach, the SAR and temperature distributions were predicted for six patients at 312 positions. Patient displacements and rotations as well as the combination of both were considered inside the Sigma-Eye applicator. Position sensitivity is assessed for hyperthermia treatment planning -guided steering, which relies on model-based optimization of the SAR and temperature distribution. The evaluation of the patient mispositioning was done with and without optimization. The evaluation without optimization was made by creating a treatment plan for the patient reference position in the center of the applicator and applied for all other positions, while the evaluation with optimization was based on creating an individual plan for each position. The parameter T90 was used for the temperature evaluation, which was defined as the temperature that covers 90% of the gross tumor volume (GTV). Furthermore, the hotspot tumor quotient (HTQ) was used as a goal function to assess the quality of the SAR and temperature distribution. The T90 was shown considerably dependent on the position within the applicator. Without optimization, the T90 was clearly decreased below 40 °C by patient shifts and the combination of shifts and rotations. However, the application of optimization for each positon led to an increase of T90 in the GTV. Position inaccuracies of less than 1 cm in the X-and Y-directions and 2 cm in the Z-direction, resulted in an increase of HTQ of less than 5%, which does not significantly affect the SAR and temperature distribution. Current positioning precision is sufficient in the X (right-left)-direction, but position accuracy is required in the Y-and Z-directions.


Assuntos
Absorção de Radiação , Hipertermia Induzida , Posicionamento do Paciente , Erros de Configuração em Radioterapia , Temperatura , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Strahlenther Onkol ; 193(5): 351-366, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28251250

RESUMO

Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.


Assuntos
Ensaios Clínicos como Assunto/instrumentação , Ensaios Clínicos como Assunto/normas , Hipertermia Induzida/instrumentação , Hipertermia Induzida/normas , Guias de Prática Clínica como Assunto , Garantia da Qualidade dos Cuidados de Saúde/normas , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Alemanha , Raios Infravermelhos , Internacionalidade , Micro-Ondas
7.
Int J Hyperthermia ; 33(4): 471-482, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28049386

RESUMO

Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.

8.
Front Oncol ; 6: 141, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379203

RESUMO

Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities.

9.
Int J Hyperthermia ; 32(4): 417-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132465

RESUMO

The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Animais , Humanos , Temperatura , Termometria
10.
Phys Med Biol ; 61(7): 2646-64, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26976046

RESUMO

The purpose of this work was to provide a feasible and easy to apply phantom-based quality assurance (QA) procedure for superficial hyperthermia (SHT) applicators by means of infrared (IR) thermography. The VarioCAM hr head (InfraTec, Dresden, Germany) was used to investigate the SA-812, the SA-510 and the SA-308 applicators (all: Pyrexar Medical, Salt Lake City, UT, USA). Probe referencing and thermal equilibrium procedures were applied to determine the emissivity of the muscle-equivalent agar phantom. Firstly, the disturbing potential of thermal conduction on the temperature distribution inside the phantom was analyzed through measurements after various heating times (5-50 min). Next, the influence of the temperature of the water bolus between the SA-812 applicator and the phantom's surface was evaluated by varying its temperature. The results are presented in terms of characteristic values (extremal temperatures, percentiles and effective field sizes (EFS)) and temperature-area-histograms (TAH). Lastly, spiral antenna applicators were compared by the introduced characteristics. The emissivity of the used phantom was found to be ε = 0.91 ± 0.03, the results of both methods coincided. The influence of thermal conduction with regard to heating time was smaller than expected; the EFS of the SA-812 applicator had a size of (68.6 ± 6.7) cm(2), averaged group variances were ±3.0 cm(2). The TAHs show that the influence of the water bolus is mostly limited to depths of <3 cm, yet it can greatly enhance or reduce heat generation in this regime: at a depth of 1 cm, measured maximal temperature rises were 14.5 °C for T Bolus = 30 °C and 8.6 °C for T Bolus = 21 °C, respectively. The EFS was increased, too. The three spiral antenna applicators generated similar heat distributions. Generally, the procedure proved to yield informative insights into applicator characteristics, thus making the application of an IR camera a very useful tool in SHT technical QA.


Assuntos
Hipertermia Induzida/instrumentação , Raios Infravermelhos , Termometria/instrumentação , Humanos , Hipertermia Induzida/métodos , Sensibilidade e Especificidade , Termômetros/normas , Termometria/normas
11.
Radiat Environ Biophys ; 54(2): 155-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25600561

RESUMO

The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.


Assuntos
Elétrons/uso terapêutico , Lasers , Aceleradores de Partículas , Radioterapia/instrumentação , Animais , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Transformação Celular Neoplásica , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Camundongos , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...