Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dtsch Dermatol Ges ; 22(3): 339-347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361141

RESUMO

The use of artificial intelligence (AI) continues to establish itself in the most diverse areas of medicine at an increasingly fast pace. Nevertheless, many healthcare professionals lack the basic technical understanding of how this technology works, which severely limits its application in clinical settings and research. Thus, we would like to discuss the functioning and classification of AI using melanoma as an example in this review to build an understanding of the technology behind AI. For this purpose, elaborate illustrations are used that quickly reveal the technology involved. Previous reviews tend to focus on the potential applications of AI, thereby missing the opportunity to develop a deeper understanding of the subject matter that is so important for clinical application. Malignant melanoma has become a significant burden for healthcare systems. If discovered early, a better prognosis can be expected, which is why skin cancer screening has become increasingly popular and is supported by health insurance. The number of experts remains finite, reducing their availability and leading to longer waiting times. Therefore, innovative ideas need to be implemented to provide the necessary care. Thus, machine learning offers the ability to recognize melanomas from images at a level comparable to experienced dermatologists under optimized conditions.


Assuntos
Dermatologia , Melanoma , Neoplasias Cutâneas , Humanos , Inteligência Artificial , Melanoma/diagnóstico , Dermatologia/métodos , Neoplasias Cutâneas/diagnóstico , Aprendizado de Máquina
2.
Geburtshilfe Frauenheilkd ; 82(9): 955-969, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110895

RESUMO

Introduction To date, most ways to perform facial expression recognition rely on two-dimensional images, advanced approaches with three-dimensional data exist. These however demand stationary apparatuses and thus lack portability and possibilities to scale deployment. As human emotions, intent and even diseases may condense in distinct facial expressions or changes therein, the need for a portable yet capable solution is signified. Due to the superior informative value of three-dimensional data on facial morphology and because certain syndromes find expression in specific facial dysmorphisms, a solution should allow portable acquisition of true three-dimensional facial scans in real time. In this study we present a novel solution for the three-dimensional acquisition of facial geometry data and the recognition of facial expressions from it. The new technology presented here only requires the use of a smartphone or tablet with an integrated TrueDepth camera and enables real-time acquisition of the geometry and its categorization into distinct facial expressions. Material and Methods Our approach consisted of two parts: First, training data was acquired by asking a collective of 226 medical students to adopt defined facial expressions while their current facial morphology was captured by our specially developed app running on iPads, placed in front of the students. In total, the list of the facial expressions to be shown by the participants consisted of "disappointed", "stressed", "happy", "sad" and "surprised". Second, the data were used to train a self-normalizing neural network. A set of all factors describing the current facial expression at a time is referred to as "snapshot". Results In total, over half a million snapshots were recorded in the study. Ultimately, the network achieved an overall accuracy of 80.54% after 400 epochs of training. In test, an overall accuracy of 81.15% was determined. Recall values differed by the category of a snapshot and ranged from 74.79% for "stressed" to 87.61% for "happy". Precision showed similar results, whereas "sad" achieved the lowest value at 77.48% and "surprised" the highest at 86.87%. Conclusions With the present work it can be demonstrated that respectable results can be achieved even when using data sets with some challenges. Through various measures, already incorporated into an optimized version of our app, it is to be expected that the training results can be significantly improved and made more precise in the future. Currently a follow-up study with the new version of our app that encompasses the suggested alterations and adaptions, is being conducted. We aim to build a large and open database of facial scans not only for facial expression recognition but to perform disease recognition and to monitor diseases' treatment progresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...