Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Angew Chem Int Ed Engl ; : e202405636, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807438

RESUMO

Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents: which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches to cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (here: >3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.

3.
J Am Coll Radiol ; 21(7): 1049-1057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38215805

RESUMO

OBJECTIVE: The role of MRI in guiding patients' diagnosis and treatment is increasing. Therefore, timely MRI performance prevents delays that can impact patient care. We assessed the timeliness of performing outpatient MRIs using the socio-ecological model approach and evaluated multilevel factors associated with delays. METHODS: This institutional review board-approved study included outpatient MRI examinations ordered between October 1, 2021, and December 31, 2022, for performance at a large quaternary care health system. Mean order-to-performed (OtoP) interval (in days) and prolonged OtoP interval (defined as >10 days) for MRI orders with an expected date of 1 day to examination performance were measured. Logistic regression was used to assess patient-level (demographic and social determinants of health), radiology practice-level, and community-level factors associated with prolonged OtoP interval. RESULTS: There were 126,079 MRI examination orders with expected performance within 1 day placed during the study period (56% of all MRI orders placed). After excluding duplicates, there were 97,160 orders for unique patients. Of the MRI orders, 48% had a prolonged OtoP interval, and mean OtoP interval was 18.5 days. Factors significantly associated with delay in MRI performance included public insurance (odds ratio [OR] = 1.11, P < .001), female gender (OR = 1.11, P < .001), radiology subspecialty (ie, cardiac, OR = 1.71, P < .001), and patients from areas that are most deprived (ie, highest Area Deprivation Index quintile, OR = 1.70, P < .001). DISCUSSION: Nearly half of outpatient MRI orders were delayed, performed >10 days from the expected date selected by the ordering provider. Addressing multilevel factors associated with such delays may help enhance timeliness and equity of access to MRI examinations, potentially reducing diagnostic errors and treatment delays.


Assuntos
Acessibilidade aos Serviços de Saúde , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Fatores de Tempo , Idoso , Assistência Ambulatorial/estatística & dados numéricos , Pacientes Ambulatoriais
4.
Nanoscale ; 15(15): 7154-7163, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009757

RESUMO

The transition metal dichalcogenide family of semiconducting two-dimensional materials has recently shown a prominent potential to be an ideal platform to study the exciton Mott transition into electron-hole plasma and liquid phases due to their strong Coulomb interactions. Here, we show that pulsed laser excitation at high pump fluences can induce this exciton Mott transition to an electron-hole plasma in mono and few-layer transition metal dichalcogenides at room temperature. The formation of an electron-hole plasma leads to a broadband light emission spanning from the near infrared to the visible region. In agreement with our theoretical calculations, the photoluminescence emission at high energies displays an exponential decay that directly reflects the electronic temperature - a characteristic fingerprint of unbound electron-hole pair recombination. Furthermore, two-pulse excitation correlation measurements were performed to study the dynamics of electronic cooling, which shows two decay time components, one of less than 100 fs and a slower component of few ps associated with the electron-phonon and phonon-lattice bath thermalizations, respectively. Our work may shed light on further studies of the exciton Mott transition into other two-dimensional materials and their heterostructures and its applications in nanolasers and other optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...