Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0259840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855749

RESUMO

BACKGROUND: We investigated the effect of delirium burden in mechanically ventilated patients, beginning in the ICU and continuing throughout hospitalization, on functional neurologic outcomes up to 2.5 years following critical illness. METHODS: Prospective cohort study of enrolling 178 consecutive mechanically ventilated adult medical and surgical ICU patients between October 2013 and May 2016. Altogether, patients were assessed daily for delirium 2941days using the Confusion Assessment Method for the ICU (CAM-ICU). Hospitalization delirium burden (DB) was quantified as number of hospital days with delirium divided by total days at risk. Survival status up to 2.5 years and neurologic outcomes using the Glasgow Outcome Scale were recorded at discharge 3, 6, and 12 months post-discharge. RESULTS: Of 178 patients, 19 (10.7%) were excluded from outcome analyses due to persistent coma. Among the remaining 159, 123 (77.4%) experienced delirium. DB was independently associated with >4-fold increased mortality at 2.5 years following ICU admission (adjusted hazard ratio [aHR], 4.77; 95% CI, 2.10-10.83; P < .001), and worse neurologic outcome at discharge (adjusted odds ratio [aOR], 0.02; 0.01-0.09; P < .001), 3 (aOR, 0.11; 0.04-0.31; P < .001), 6 (aOR, 0.10; 0.04-0.29; P < .001), and 12 months (aOR, 0.19; 0.07-0.52; P = .001). DB in the ICU alone was not associated with mortality (HR, 1.79; 0.93-3.44; P = .082) and predicted neurologic outcome less strongly than entire hospital stay DB. Similarly, the number of delirium days in the ICU and for whole hospitalization were not associated with mortality (HR, 1.00; 0.93-1.08; P = .917 and HR, 0.98; 0.94-1.03, P = .535) nor with neurological outcomes, except for the association between ICU delirium days and neurological outcome at discharge (OR, 0.90; 0.81-0.99, P = .038). CONCLUSIONS: Delirium burden throughout hospitalization independently predicts long term neurologic outcomes and death up to 2.5 years after critical illness, and is more predictive than delirium burden in the ICU alone and number of delirium days.


Assuntos
Delírio/mortalidade , Delírio/fisiopatologia , Unidades de Terapia Intensiva , Idoso , Analgésicos/uso terapêutico , Coma/mortalidade , Coma/fisiopatologia , Estado Terminal/mortalidade , Feminino , Seguimentos , Humanos , Hipnóticos e Sedativos/uso terapêutico , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/etiologia , Prevalência , Estudos Prospectivos , Respiração Artificial
2.
PLoS Comput Biol ; 10(10): e1003866, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275376

RESUMO

The sleep onset process (SOP) is a dynamic process correlated with a multitude of behavioral and physiological markers. A principled analysis of the SOP can serve as a foundation for answering questions of fundamental importance in basic neuroscience and sleep medicine. Unfortunately, current methods for analyzing the SOP fail to account for the overwhelming evidence that the wake/sleep transition is governed by continuous, dynamic physiological processes. Instead, current practices coarsely discretize sleep both in terms of state, where it is viewed as a binary (wake or sleep) process, and in time, where it is viewed as a single time point derived from subjectively scored stages in 30-second epochs, effectively eliminating SOP dynamics from the analysis. These methods also fail to integrate information from both behavioral and physiological data. It is thus imperative to resolve the mismatch between the physiological evidence and analysis methodologies. In this paper, we develop a statistically and physiologically principled dynamic framework and empirical SOP model, combining simultaneously-recorded physiological measurements with behavioral data from a novel breathing task requiring no arousing external sensory stimuli. We fit the model using data from healthy subjects, and estimate the instantaneous probability that a subject is awake during the SOP. The model successfully tracked physiological and behavioral dynamics for individual nights, and significantly outperformed the instantaneous transition models implicit in clinical definitions of sleep onset. Our framework also provides a principled means for cross-subject data alignment as a function of wake probability, allowing us to characterize and compare SOP dynamics across different populations. This analysis enabled us to quantitatively compare the EEG of subjects showing reduced alpha power with the remaining subjects at identical response probabilities. Thus, by incorporating both physiological and behavioral dynamics into our model framework, the dynamics of our analyses can finally match those observed during the SOP.


Assuntos
Modelos Biológicos , Sono/fisiologia , Adulto , Biologia Computacional , Eletroencefalografia , Feminino , Humanos , Masculino , Análise e Desempenho de Tarefas , Vigília , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...