Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 50(6): 61-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15536991

RESUMO

Separately collected urine ("yellow water") can be utilized as fertilizer. In order to decrease storage volumes and energy consumption for yellow water transport to fields, enrichment of nutrients in yellow water has to be considered. Laboratory-scale batch freeze concentration of yellow water has been tested in ice-front freezing apparatus: a stirred vessel and a falling film freeze concentrator (coolant temperatures: -6 to -16 degrees C). With progressing enrichment of the liquid concentrate, the frozen ice was increasingly contaminated with yellow water constituents (ammonia, total nitrogen, total phosphorus, TOC, and salts determined as conductivity). The higher the initial salinity of the yellow water and the lower the mechanical agitation of the liquid phase contacting the growing ice front, the more the frozen ice was contaminated. The results indicate, that in ice-front freezing devices multistage processes are necessary, i.e. the melted ice phase has to be purified (and the concentrates must be further enriched) in a second or even in a third stage. Energy consumption of this process is very high. However, technical scale suspension freeze concentration is reasonable in centralized ecological sanitation schemes if the population exceeds 0.5 million and distance of yellow water transportation to fields is more than 80 km.


Assuntos
Conservação dos Recursos Naturais , Fertilizantes , Esgotos/química , Urina , Eliminação de Resíduos Líquidos/métodos , Transporte Biológico , Congelamento , Saneamento , Cloreto de Sódio/química , Banheiros , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...