Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(22): eaaz4126, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523988

RESUMO

The Mre11 nuclease is involved in early responses to DNA damage, often mediated by its role in DNA end processing. MRE11 mutations and aberrant expression are associated with carcinogenesis and cancer treatment outcomes. While, in recent years, progress has been made in understanding the role of Mre11 nuclease activities in DNA double-strand break repair, their role during replication has remained elusive. The nucleoside analog gemcitabine, widely used in cancer therapy, acts as a replication chain terminator; for a cell to survive treatment, gemcitabine needs to be removed from replicating DNA. Activities responsible for this removal have, so far, not been identified. We show that Mre11 3' to 5' exonuclease activity removes gemcitabine from nascent DNA during replication. This contributes to replication progression and gemcitabine resistance. We thus uncovered a replication-supporting role for Mre11 exonuclease activity, which is distinct from its previously reported detrimental role in uncontrolled resection in recombination-deficient cells.


Assuntos
Proteínas de Ligação a DNA , Desoxicitidina , DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Exonucleases/genética , Exonucleases/metabolismo , Gencitabina
2.
EMBO J ; 20(23): 6660-71, 2001 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-11726502

RESUMO

To study the role of Rad50 in the DNA damage response, we cloned and deleted the Schizosaccharomyces pombe RAD50 homologue. The deletion is sensitive to a range of DNA-damaging agents and shows dynamic epistatic interactions with other recombination-repair genes. We show that Rad50 is necessary for recombinational repair of the DNA lesion at the mating-type locus and that rad50Delta shows slow DNA replication. We also find that Rad50 is not required for slowing down S phase in response to hydroxy urea or methyl methanesulfonate (MMS) treatment. Interestingly, in rad50Delta cells, the recombination frequency between two homologous chromosomes is increased at the expense of sister chromatid recombination. We propose that Rad50, an SMC-like protein, promotes the use of the sister chromatid as the template for homologous recombinational repair. In support of this, we found that Rad50 functions in the same pathway for the repair of MMS-induced damage as Rad21, the homologue of the Saccharomyces cerevisiae Scc1 cohesin protein. We speculate that Rad50 interacts with the cohesin complex during S phase to assist repair and possibly re-initiation of replication after replication fork collapse.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Troca de Cromátide Irmã , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Separação Celular , Proteínas Cromossômicas não Histona , Deleção Cromossômica , Clonagem Molecular , Cruzamentos Genéticos , Dano ao DNA , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Epistasia Genética , Citometria de Fluxo , Proteínas Fúngicas/fisiologia , Raios gama , Deleção de Genes , Genótipo , Humanos , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Recombinação Genética , Fase S , Schizosaccharomyces/metabolismo , Homologia de Sequência de Aminoácidos , Telômero/metabolismo , Fatores de Tempo
3.
EMBO J ; 20(1-2): 210-21, 2001 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11226171

RESUMO

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) in mammalian cells requires the Ku70-Ku80 heterodimer, the DNA-PK catalytic subunit DNA-PKcs, as well as DNA ligase IV and Xrcc4. NHEJ of plasmid DSBs in Saccharomyces cerevisiae requires Ku, Xrcc4 and DNA ligase IV, as well as Mre11, Rad50, Xrs2 and DNA damage checkpoint proteins. Saccharomyces cerevisiae Ku is also required for telomere length maintenance and transcriptional silencing. We have characterized NHEJ in Schizosaccharomyces pombe using an extrachromosomal assay and find that, as anticipated, it is Ku70 and DNA ligase IV dependent. Unexpectedly, we find that Rad32, Rad50 (the S.pombe homologues of Mre11 and Rad50, respectively) and checkpoint proteins are not required for NHEJ. Furthermore, although S.pombe Ku70 is required for maintenance of telomere length, it is dispensable for transcriptional silencing at telomeres and is located throughout the nucleus rather than concentrated at the telomeres. Together, these results provide insight into the mechanism of NHEJ and contrast significantly with recent studies in S.cerevisiae.


Assuntos
Antígenos Nucleares , Dano ao DNA , DNA Helicases , DNA Ligases/metabolismo , Reparo do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/genética , Animais , Sequência de Bases , Bleomicina/farmacologia , Núcleo Celular/genética , Núcleo Celular/fisiologia , DNA Ligase Dependente de ATP , DNA Fúngico/metabolismo , Raios gama , Inativação Gênica , Autoantígeno Ku , Mamíferos , Dados de Sequência Molecular , Mapeamento por Restrição , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/efeitos da radiação , Telômero/genética , Telômero/fisiologia , Temperatura , Fatores de Transcrição/metabolismo
4.
Mol Cell Biol ; 19(1): 241-50, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9858548

RESUMO

We have identified in the fission yeast Schizosaccharomyces pombe a MutS homolog that shows highest homology to the Msh2 subgroup. msh2 disruption gives rise to increased mitotic mutation rates and increased levels of postmeiotic segregation of genetic markers. In bandshift assays performed with msh2Delta cell extracts, a general mismatch-binding activity is absent. By complementation assays, we showed that S. pombe msh2 is allelic with the previously identified swi8 and mut3 genes, which are involved in mating-type switching. The swi8-137 mutant has a mutation in the msh2 gene which causes a truncated Msh2 peptide lacking a putative DNA-binding domain. Cytological analysis revealed that during meiotic prophase of msh2-defective cells, chromosomal structures were frequently formed; such structures are rarely found in the wild type. Our data show that besides having a function in mismatch repair, S. pombe msh2 is required for correct termination of copy synthesis during mating-type switching as well as for proper organization of chromosomes during meiosis.


Assuntos
Pareamento Incorreto de Bases , Cromossomos Fúngicos , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Alelos , Sequência de Bases , Clonagem Molecular , DNA Fúngico , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Meiose , Mitose , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS , Conformação de Ácido Nucleico , Prófase , Esporos Fúngicos
5.
Mol Biol Cell ; 9(10): 2739-50, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9763441

RESUMO

Topoisomerase II is able to break and rejoin double-strand DNA. It controls the topological state and forms and resolves knots and catenanes. Not much is known about the relation between the chromosome segregation and condensation defects as found in yeast top2 mutants and the role of topoisomerase II in meiosis. We studied meiosis in a heat-sensitive top2 mutant of Schizosaccharomyces pombe. Topoisomerase II is not required until shortly before meiosis I. The enzyme is necessary for condensation shortly before the first meiotic division but not for early meiotic prophase condensation. DNA replication, prophase morphology, and dynamics of the linear elements are normal in the top2 mutant. The top2 cells are not able to perform meiosis I. Arrested cells have four spindle pole bodies and two spindles but only one nucleus, suggesting that the arrest is nonregulatory. Finally, we show that the arrest is partly solved in a top2 rec7 double mutant, indicating that topoisomerase II functions in the segregation of recombined chromosomes. We suggest that the inability to decatenate the replicated DNA is the primary defect in top2. This leads to a loss of chromatin condensation shortly before meiosis I, failure of sister chromatid separation, and a nonregulatory arrest.


Assuntos
Núcleo Celular/fisiologia , Cromossomos Bacterianos/fisiologia , DNA Topoisomerases Tipo II/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Núcleo Celular/ultraestrutura , Cromatina/fisiologia , Cromatina/ultraestrutura , Cromossomos Bacterianos/genética , Replicação do DNA , DNA Topoisomerases Tipo II/genética , Temperatura Alta , Meiose , Mutagênese , Prófase , Schizosaccharomyces/citologia , Fuso Acromático/genética , Fuso Acromático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...