Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 10: 920946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844894

RESUMO

Fiducial points of photoplethysmogram (PPG), first derivative PPG (VPG), and second derivative PPG (APG) are essential in extracting numerous parameters to diagnose cardiovascular disease. However, the fiducial points were usually detected using complex mathematical algorithms. Inflection points from derivatives waveforms are not thoroughly studied, whereas they can significantly assist in peak detection. This study is performed to investigate the derivative waveforms of PPG and use them to detect the important peaks of PPG, VPG, and APG. PPGs with different morphologies from 43 ischemic heart disease subjects are analyzed. Inflection points of the derivative waveforms up to the fourth level are observed, and consistent information (derivative markers) is used to detect the fiducial points of PPG, VPG, and APG with proper sequence. Moving average filter and simple thresholding techniques are applied to detect the primary points in VPG and the third derivative waveform. A total of twelve out of twenty derivative markers are found reliable in detecting fiducial points of two common types of PPG. Systolic peaks are accurately detected with 99.64% sensitivity and 99.38% positive predictivity using the 43 IHD dataset and Complex System Laboratory (CSL) Pulse Oximetry Artifact Labels database. The study has introduced the fourth derivative PPG waveform with four main points, which are significantly valuable for detecting the fiducial points of PPG, VPG, and APG.


Assuntos
Artefatos , Fotopletismografia , Algoritmos , Humanos , Fotopletismografia/métodos
2.
Sensors (Basel) ; 17(1)2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28036040

RESUMO

The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.


Assuntos
Arecaceae/fisiologia , Técnicas Biossensoriais/métodos , Frutas/fisiologia , Arecaceae/química , Técnicas Biossensoriais/instrumentação , Frutas/química , Análise de Frequência de Ressonância/instrumentação , Análise de Frequência de Ressonância/métodos
3.
Sensors (Basel) ; 14(11): 21923-40, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25414970

RESUMO

As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.


Assuntos
Espectroscopia Dielétrica/instrumentação , Análise de Alimentos/instrumentação , Frutas/química , Frutas/classificação , Magnetismo/instrumentação , Phoeniceae/química , Phoeniceae/classificação , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Sensors (Basel) ; 14(2): 2431-48, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24496313

RESUMO

Among palm oil millers, the ripeness of oil palm Fresh Fruit Bunch (FFB) is determined through visual inspection. To increase the productivity of the millers, many researchers have proposed with a new detection method to replace the conventional one. The sensitivity of such a sensor plays a crucial role in determining the effectiveness of the method. In our preliminary study a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is proposed. The design of the proposed air coil sensor based on an inductive sensor is further investigated to improve its sensitivity. This paper investigates the results pertaining to the effects of the air coil structure of an oil palm fruit sensor, taking consideration of the used copper wire diameter ranging from 0.10 mm to 0.18 mm with 60 turns. The flat-type shape of air coil was used on twenty samples of fruitlets from two categories, namely ripe and unripe. Samples are tested with frequencies ranging from 20 Hz to 120 MHz. The sensitivity of the sensor between air to fruitlet samples increases as the coil diameter increases. As for the sensitivity differences between ripe and unripe samples, the 5 mm air coil length with the 0.12 mm coil diameter provides the highest percentage difference between samples and it is amongst the highest deviation value between samples. The result from this study is important to improve the sensitivity of the inductive oil palm fruit sensor mainly with regards to the design of the air coil structure. The efficiency of the sensor to determine the maturity of the oil palm FFB and the ripening process of the fruitlet could further be enhanced.

5.
Sensors (Basel) ; 13(2): 2254-66, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23435051

RESUMO

From the Malaysian harvester's perspective, the determination of the ripeness of the oil palm (FFB) is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated to determine their inductance and resonant characteristics. Sixteen samples from two categories, namely ripe oil palm fruitlets and unripe oil palm fruitlets, are tested from 100 Hz up to 100 MHz frequency. The results showed the inductance and resonant characteristics of the air coil sensors display significant changes among the samples of each category. The investigations on the frequency characteristics of the sensor air coils are studied to observe the effect of variations in the coil diameter. The effect of coil diameter yields a significant 0.02643 MHz difference between unripe samples to air and 0.01084 MHz for ripe samples to air. The designed sensor exhibits significant potential in determining the maturity of oil palm fruits.


Assuntos
Agricultura/métodos , Arecaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Óleos de Plantas/química , Agricultura/instrumentação , Ar , Óleo de Palmeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...