Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 63(6): 671-84, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9668207

RESUMO

The three-dimensional structures of four mutant E. coli inorganic pyrophosphatases (PPases) with single Asp-->Asn substitutions at positions 42, 65, 70, and 97 were solved at 1.95, 2.15, 2.10, and 2.20 A resolution, respectively. Asp-42-->Asn and Asp-65-->Asn mutant PPases were prepared as complexes with sulfate--a structural analog of phosphate, the product of enzymatic reaction. A comparison of mutant enzymes with native PPases revealed that a single amino acid substitution changes the position of the mutated residue as well as the positions of several functional groups and some parts of a polypeptide chain. These changes are responsible for the fact that mutant PPases differ from the native ones in their catalytic properties. The sulfate binding to the mutant PPase active site causes molecular asymmetry, as shown for the native PPase earlier. The subunit asymmetry is manifested in different positions of sulfate and several functional groups, as well as changes in packing of hexamers in crystals and in cell parameters.


Assuntos
Asparagina/química , Ácido Aspártico/química , Escherichia coli/enzimologia , Pirofosfatases/química , Substituição de Aminoácidos , Pirofosfatase Inorgânica , Conformação Proteica , Difração de Raios X
2.
Biochemistry (Mosc) ; 63(5): 592-9, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9632898

RESUMO

The three-dimensional structures of E. coli inorganic pyrophosphatase (PPase) and its complexes with Mn2+ in a high affinity site and with Mg2+ in high and low affinity sites determined by authors in 1994-1996 at 1.9-2.2 A resolution are compared. Metal ion binding initiates the shifts of alpha-carbon atoms and of functional groups and rearrangement of non-covalent interaction system of hexameric enzyme molecule. As a result, the apoPPase with six equal subunits turns after Mg2+ binding into the structure with three types of subunits distinguished by structure and occupance of the low affinity Mg2+ site. Induced asymmetry reflects the subunit interactions and cooperativity between Mg2+ binding sites. These molecular rearrangements are structural basis to account for special features of the enzyme behavior and to propose one of the pathways for enzymatic activity regulation of constitutive PPases in vivo.


Assuntos
Escherichia coli/enzimologia , Pirofosfatases/química , Pirofosfatases/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Pirofosfatase Inorgânica , Magnésio/metabolismo , Manganês/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
J Mol Biol ; 276(3): 603-23, 1998 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-9551100

RESUMO

The X-ray structure of tryptophanase (Tnase) reveals the interactions responsible for binding of the pyridoxal 5'-phosphate (PLP) and atomic details of the K+ binding site essential for catalysis. The structure of holo Tnase from Proteus vulgaris (space group P2(1)2(1)2(1) with a = 115.0 A, b = 118.2 A, c = 153.7 A) has been determined at 2.1 A resolution by molecular replacement using tyrosine phenol-lyase (TPL) coordinates. The final model of Tnase, refined to an R-factor of 18.7%, (Rfree = 22.8%) suggests that the PLP-enzyme from observed in the structure is a ketoenamine. PLP is bound in a cleft formed by both the small and large domains of one subunit and the large domain of the adjacent subunit in the so-called "catalytic" dimer. The K+ cations are located on the interface of the subunits in the dimer. The structure of the catalytic dimer and mode of PLP binding in Tnase resemble those found in aspartate amino-transferase, TPL, omega-amino acid pyruvate aminotransferase, dialkylglycine decarboxylase (DGD), cystathionine beta-lyase and ornithine decarboxylase. No structural similarity has been detected between Tnase and the beta 2 dimer of tryptophan synthase which catalyses the same beta-replacement reaction. The single monovalent cation binding site of Tnase is similar to that of TPL, but differs from either of those in DGD.


Assuntos
Dobramento de Proteína , Estrutura Secundária de Proteína , Proteus vulgaris/enzimologia , Triptofanase/química , Triptofanase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Simulação por Computador , Cristalografia por Raios X/métodos , Escherichia coli , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Potássio/metabolismo , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Software , Termodinâmica
4.
FEBS Lett ; 410(2-3): 502-8, 1997 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-9237692

RESUMO

The three-dimensional structure of inorganic pyrophosphatase from Escherichia coli complexed with sulfate was determined at 2.2 A resolution using Patterson's search technique and refmed to an R-factor of 19.2%. Sulfate may be regarded as a structural analog of phosphate, the product of the enzyme reaction, and as a structural analog of methyl phosphate, the irreversible inhibitor. Sulfate binds to the pyrophosphatase active site cavity as does phosphate and this diminishes molecular symmetry, converting the homohexamer structure form (alpha3)2 into alpha3'alpha3". The asymmetry of the molecule is manifested in displacements of protein functional groups and some parts of the polypeptide chain and reflects the interaction of subunits and their cooperation. The significance of re-arrangements for pyrophosphatase function is discussed.


Assuntos
Sulfato de Amônio/química , Escherichia coli/enzimologia , Pirofosfatases/química , Sulfato de Amônio/metabolismo , Apoenzimas/química , Cristalografia por Raios X , Pirofosfatase Inorgânica , Modelos Moleculares , Conformação Proteica , Pirofosfatases/metabolismo
5.
Biochemistry ; 36(25): 7754-60, 1997 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-9201917

RESUMO

Crystalline holo inorganic pyrophosphatase from Escherichia coli was grown in the presence of 250 mM MgCl2. The crystal structure has been solved by Patterson search techniques and refined to an R-factor of 17.6% at 1.9 A resolution. The upper estimate of the root-mean-square error in atomic positions is 0.26 A. These crystals belong to space group P3(2)21 with unit cell dimensions a = b = 110.27 A and c = 78.17 A. The asymmetric unit contains a trimer of subunits, i.e., half of the hexameric molecule. In the central cavity of the enzyme molecule, three Mg2+ ions, each shared by two subunits of the hexamer, are found. In the active sites of two crystallographically independent subunits, two Mg2+ ions are bound. The second active site Mg2+ ion is missing in the third subunit. A mechanism of catalysis is proposed whereby a water molecule activated by a Mg2+ ion and Tyr 55 play essential roles.


Assuntos
Escherichia coli/enzimologia , Pirofosfatases/química , Sítios de Ligação , Cristalografia por Raios X , Hidrólise , Pirofosfatase Inorgânica , Modelos Químicos , Ligação Proteica
6.
FEBS Lett ; 399(1-2): 99-102, 1996 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-8980129

RESUMO

Aspartic acids 65, 67, 70, 97 and 102 in the inorganic pyrophosphatase of Escherichia coli, identified as evolutionarily conserved residues of the active site, have been replaced by asparagine. Each mutation was found to decrease the k(app) value by approx. 2-3 orders of magnitude. At the same time, the Km values changed only slightly. Only minor changes take place in the pK values of the residues essential for both substrate binding and catalysis. All mutant variants have practically the same affinity to Mg2+ as the wild-type pyrophosphatase.


Assuntos
Escherichia coli/enzimologia , Magnésio/metabolismo , Pirofosfatases/metabolismo , Sítios de Ligação , Catálise , Concentração de Íons de Hidrogênio , Hidrólise , Pirofosfatase Inorgânica , Mutagênese Sítio-Dirigida , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Especificidade por Substrato
7.
J Mol Biol ; 264(1): 152-61, 1996 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-8950274

RESUMO

Haemoglobins have the ability to discriminate between oxygen and other diatomic molecules. To further understanding of this process the X-ray crystal structures of carbonmonoxy and nitrosyl-leghaemoglobin have been determined at 1.8 A resolution. The ligand geometry is discussed in detail and the controversial issue of bent versus linear carbon monoxide binding is addressed. The bond angle of 160 degrees for CO-leghaemoglobin is in conflict with recent spectroscopy results on myoglobin but is consistent with angles obtained for myoglobin X-ray crystal structures. In contrast to the numerous carbon monoxide studies, very little stereochemical information is available for the nitric oxide adduct of haemoglobin. This is provided by the X-ray structure of NO-leghaemoglobin, which conforms to expected geometry with an Fe-NO angle of 147 degrees and a lengthened iron-proximal histidine bond. Thus crystallographic evidence is given for the predicted weakening of this bond on the binding of nitric oxide.


Assuntos
Monóxido de Carbono/metabolismo , Leghemoglobina/metabolismo , Óxido Nítrico/metabolismo , Sítios de Ligação , Monóxido de Carbono/química , Cristalografia por Raios X , Eletroquímica , Fabaceae/metabolismo , Heme/química , Cinética , Leghemoglobina/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Óxido Nítrico/química , Plantas Medicinais , Ligação Proteica , Estrutura Secundária de Proteína
8.
Eur J Biochem ; 239(1): 220-8, 1996 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-8706712

RESUMO

The three-dimensional structure of the manganese-phosphate complex of inorganic pyrophosphatase from Saccharomyces cerevisiae has been refined to an R factor of 19.0% at 2.4-A resolution. X-ray data were collected from a single crystal using an imaging plate scanner and synchrotron radiation. There is one dimeric molecule in the asymmetric unit. The upper estimate of the root-mean-square coordinate error is 0.4 A using either the delta A plot or the superposition of the two crystallographically independent subunits. The good agreement between the coordinates of the two subunits, which were not subjected to non-crystallographic symmetry restraints, provides independent validation of the structure analysis. The active site in each subunit contains four manganese ions and two phosphates. The manganese ions are coordinated by the side chains of aspartate and glutamate residues. The phosphate groups, which were identified on the basis of their local stereochemistry, interact either directly or via water molecules with manganese ions and lysine, arginine, and tyrosine side chains. The phosphates are bridged by two of the manganese ions. The outer phosphate is exposed to solvent. The inner phosphate is surrounded by all four manganese ions. The ion-binding sites are related to the order of binding previously established from kinetic studies. A hypothesis for the transition state of the catalytic reaction is put forward.


Assuntos
Manganês/metabolismo , Fosfatos/metabolismo , Pirofosfatases/química , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , Hidrólise , Pirofosfatase Inorgânica , Conformação Proteica , Dobramento de Proteína , Pirofosfatases/isolamento & purificação , Pirofosfatases/metabolismo , Especificidade por Substrato
9.
Biochem Mol Biol Int ; 38(1): 37-42, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8932517

RESUMO

New method of purification of tyrosine phenol-lyase from Erwinia herbicola has been developed. The enzyme obtained is homogeneous and characterised by a specific activity which is three times higher then that described earlier. Crystals of holoenzyme complexed with monovalent cations have been grown from NaCl, KCl and (NH4)2SO4 containing solutions. The crystals belong to P6(2)22 space group. They are stable to the X-ray radiation and diffract up to 2.6-3.1 A. Asymmetric unit contains one subunit of tetrameric molecule.


Assuntos
Erwinia/enzimologia , Tirosina Fenol-Liase/química , Tirosina Fenol-Liase/isolamento & purificação , Cristalização , Cristalografia por Raios X , Conformação Proteica
10.
FEBS Lett ; 377(1): 44-6, 1995 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-8543015

RESUMO

Further refinement of X-ray data on Escherichia coli inorganic pyrophosphatase [Oganessyan et al. (1994) FEBS Lett. 348, 301-304] to 2.2 A reveals a system of noncovalent interactions involving Tyr55 and Tyr141 in the active site. The pKa for one of the eight Tyr residues in wild-type pyrophosphatase is as low as 9.1 and further decreases to 8.1 upon Mg2+ binding, generating characteristic changes in the absorption spectrum. These effects are lost in a Y55F but not in a Y141F variant. It is suggested that the lower-affinity site for Mg2+ in the enzyme is formed by Tyr55 and Asp70, which are in close proximity in the apo-enzyme structure.


Assuntos
Escherichia coli/enzimologia , Magnésio/farmacologia , Pirofosfatases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica , Magnésio/metabolismo , Estrutura Molecular , Pirofosfatases/química , Proteínas Recombinantes , Espectrofotometria , Tirosina/química
11.
J Mol Biol ; 251(1): 104-15, 1995 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-7643380

RESUMO

The leghaemoglobins have oxygen affinities 11 to 24 times higher than that of sperm whale myoglobin, due mainly to higher rates of association. To find out why, we have determined the structures of deoxy- and oxy-leghaemoglobin II of the lupin at 1.7 A resolution. Results confirm the general features found in previous X-ray analyses of this protein. The unique feature that has now emerged is the rotational freedom of the proximal histidine. In deoxy-leghaemoglobin the imidazole oscillates between two alternative orientations, eclipsing either the lines N1-N3 or N2-N4 of the porphyrin; in oxy-leghaemoglobin it is fixed in a staggered orientation. The iron atom moves from a position 0.30 A from the plane of the pyrrole nitrogen atoms in deoxy- to a position in the plane in oxy-leghaemoglobin while the Fe- bond distance remains constant at 2.02 A. The Fe-O-O angle is 152 degrees, as in human haemoglobin. The oxygen is hydrogen-bonded to the distal histidine at N epsilon 2-O1 and N epsilon 2-O2 distance of 2.95 A and 2.68 A, respectively. The porphyrin is ruffled equally in deoxy- and oxy-leghaemoglobins, due to rotations of the pyrrols about the N-Fe-N bonds, causing the methine bridges to deviate by up to 0.32 A from the mean porphyrin plane. The only feature capable of accounting for the high on-rate of the reaction with oxygen are the mobilities of the proximal histidine and distal histidine residues in deoxy-leghaemoglobin. The eclipsed positions of the proximal histidine in deoxy-leghaemoglobin maximize steric hindrance with the porphyrin nitrogen atoms and minimize pi-->p electron donation, while its staggered position in oxy-leghaemoglobin reverses both these effects. Together with the oscillation of the imidazole between the two orientations, these two factors may reduce the activation energy for the reaction of leghaemoglobin with oxygen. The distal histidine is in a fixed position in the haem pocket in the crystal, but must be swinging in and out of the pocket at a high rate in solution to allow the oxygen to enter.


Assuntos
Fabaceae/química , Leghemoglobina/análogos & derivados , Leghemoglobina/química , Leghemoglobina/metabolismo , Plantas Medicinais , Cristalografia por Raios X , Globinas/química , Modelos Moleculares , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Conformação Proteica
12.
FEBS Lett ; 348(3): 301-4, 1994 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-8034059

RESUMO

An E. coli inorganic pyrophosphatase overproducer and a method for a large-scale production of the homogeneous enzyme are described. The inorganic pyrophosphatase was crystallized in the form containing one subunit of a homohexameric molecule per asymmetric unit: space group R32, a = 110.4 A, c = 76.8 A. The electron density map to 2.5 A resolution phased with Eu- and Hg-derivatives (figure of merit, = 0.51) was improved by the solvent flattening procedure ( = 0.77). The course of the polypeptide chain and the secondary structure elements, intersubunit contacts and positions of the active sites were characterized. Homology with S. cerevisiae inorganic pyrophosphatase structure was found.


Assuntos
Cristalografia por Raios X , Escherichia coli/enzimologia , Pirofosfatases/química , Sítios de Ligação , Cristalização , Pirofosfatase Inorgânica , Estrutura Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
13.
J Mol Biol ; 236(3): 759-85, 1994 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-8114093

RESUMO

Three-dimensional crystal structures of holo (ternary complex enzyme-NAD-azide) and apo NAD-dependent dimeric formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 have been refined to R factors of 11.7% and 14.8% at 2.05 and 1.80 A resolution, respectively. The estimated root-mean-square error in atomic co-ordinates is 0.11 A for holo and 0.18 A for apo. X-ray data were collected from single crystals using an imaging plate scanner and synchrotron radiation. In both crystal forms there is a dimer in the asymmetric unit. Both structures show essentially 2-fold molecular symmetry. NAD binding causes movement of the catalytic domain and ordering of the C terminus, where a new helix appears. This completes formation of the enzyme active centre in holo FDH. NAD is bound in the cleft separating the domains and mainly interacts with residues from the co-enzyme binding domain. In apo FDH these residues are held in essentially the same conformation by water molecules occupying the NAD binding region. An azide molecule is located near the point of catalysis, the C4 atom of the nicotinamide moiety of NAD, and overlaps with the proposed formate binding site. There is an extensive channel running from the active site to the protein surface and this is supposed to be used by substrate to reach the active centre after NAD has already bound. The structure of the active site and a hypothetical catalytic mechanism are discussed. Sequence homology of FDH with other NAD-dependent formate dehydrogenases and some D-specific dehydrogenases is discussed on the basis of the FDH three-dimensional structure.


Assuntos
Formiato Desidrogenases/química , Conformação Proteica , Estrutura Secundária de Proteína , Pseudomonas/enzimologia , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , Formiato Desidrogenases/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo
14.
J Mol Biol ; 235(2): 783-6, 1994 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-8289300

RESUMO

Crystals of Proteus vulgaris holotryptophanase have been grown by the hanging-drop technique using polyethylene glycol 4000 as precipitant in the presence of monovalent cations K+ or Cs+. Orthorhombic crystals (P2(1)2(1)2(1)) grown with Cs+ have unit cell parameters a = 115.0 A, b = 118.2 A and c = 153.7 A and diffract to 1.8 A. There are four subunits of the tetrameric molecule in the asymmetric unit. Native data have been collected to 2.5 A resolution. The 3.4 A data were collected from tetragonal crystals of Escherichia coli holotryptophanase grown under conditions described by Kawata et al. (1991). The molecular replacement solution for this crystal form has been found using tyrosine phenol-lyase coordinates. The correct enantiomorph is P4(3)2(1)2. There are two subunits in the asymmetric unit.


Assuntos
Escherichia coli/enzimologia , Proteus vulgaris/enzimologia , Triptofanase/química , Cristalização , Cristalografia por Raios X
15.
J Mol Biol ; 234(2): 493-5, 1993 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-8230228

RESUMO

The structural protein, gene product 9 (gp9), of bacteriophage T4 controls baseplate expansion at the first steps of virus attachment onto its host bacterial cell with subsequent tail contraction. Gp9, which has an M(r) of 30.8 kDa and contains 287 amino acids, has been purified from a recombinant Escherichia coli strain and crystallized at 25 degrees C using the hanging drop vapor diffusion method at pH 4.0 with ammonium sulfate as precipitant. The crystals of gp9 belong to the space group R32 with hexagonal cell dimensions a = b = 86.5 A and c = 156.2 A and diffract X-rays to at least 2.7 A. There is one molecule per asymmetric unit.


Assuntos
Bacteriófago T4/química , Genes Virais , Proteínas Virais/química , Bacteriófago T4/genética , Cristalização , Cristalografia por Raios X , Proteínas Virais/genética
16.
Biochemistry ; 32(16): 4195-206, 1993 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-7916622

RESUMO

Tyrosine phenol-lyase (EC 4.1.99.2) from Citrobacter freundii has been cloned and the primary sequence deduced from the DNA sequence. From the BrCN digest of the NaBH4-reduced holoenzyme, five peptides were purified and sequenced. The amino acid sequences of the peptides agreed with the corresponding parts of the tyrosine phenol-lyase sequence obtained from the gene structure. K257 is the pyridoxal 5'-phosphate binding residue. Assisted by the sequence data, the crystal structure of apotyrosine phenol-lyase, a pyridoxal 5'-phosphate-dependent enzyme, has been refined to an R-factor of 16.2% at 2.3-A resolution using synchrotron radiation diffraction data. The tetrameric molecule has 222 symmetry, with one of the axes coincident with the crystallographic 2-fold symmetry axis of the crystal which belongs to the space group P2(1)2(1)2 with a = 76.0 A, b = 138.3 A, and c = 93.5 A. Each subunit comprises 14 alpha-helices and 16 beta-strands, which fold into a small and a large domain. The coenzyme-binding lysine residue is located at the interface between the large and small domains of one subunit and the large domain of a crystallographically related subunit. The fold of the large, pyridoxal 5'-phosphate binding domain and the location of the active site are similar to that found in aminotransferases. Most of the residues which participate in binding of pyridoxal 5'-phosphate in aminotransferases are conserved in the structure of tyrosine phenol-lyase. Two dimers of tyrosine phenol-lyase, each of which has a domain architecture similar to that found in aspartate aminotransferases, are bound together through a hydrophobic cluster in the center of the molecule and intertwined N-terminal arms.


Assuntos
Citrobacter freundii/enzimologia , Estrutura Secundária de Proteína , Tirosina Fenol-Liase/química , Tirosina Fenol-Liase/genética , Sequência de Aminoácidos , Apoenzimas/química , Sequência de Bases , Sítios de Ligação , Citrobacter/enzimologia , Citrobacter freundii/genética , Clonagem Molecular , Genes Bacterianos , Biblioteca Genômica , Substâncias Macromoleculares , Modelos Moleculares , Modelos Estruturais , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
17.
Eur J Biochem ; 206(2): 441-52, 1992 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-1597184

RESUMO

The ternary complex of NAD-dependent formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 (enzyme-NAD-azide) has been crystallised in the space group P2(1)2(1)2(1) with cell dimensions a = 11.60 nm, b = 11.33 nm, c = 6.34 nm. There is 1 dimeric molecule/asymmetric unit. An electron density map was calculated using phases from multiple isomorphous replacement at 0.30 nm resolution. Four heavy atom derivatives were used. The map was improved by solvent flattening and molecular averaging. The atomic model, including 2 x 393 amino acid residues, was refined by the CORELS and PROLSQ packages using data between 1.0 nm and 0.30 nm excluding structure factors less than 1 sigma. The current R factor is 27.1% and the root mean square deviation from ideal bond lengths is 4.2 pm. The FDH subunit is folded into a globular two-domain (coenzyme and catalytic) structure and the active centre and NAD binding site are situated at the domain interface. The beta sheet in the FDH coenzyme binding domain contains an additional beta strand compared to other dehydrogenases. The difference in quaternary structure between FDH and the other dehydrogenases means that FDH constitutes a new subfamily of NAD-dependent dehydrogenases: namely the P-oriented dimer. The FDH nucleotide binding region of the structure is aligned with the three dimensional structures of four other dehydrogenases and the conserved residues are discussed. The amino acid residues which contribute to the active centre and which make contact with NAD have been identified.


Assuntos
Formiato Desidrogenases/química , NAD/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Pseudomonas/enzimologia , Alinhamento de Sequência
18.
FEBS Lett ; 302(3): 256-60, 1992 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-1601133

RESUMO

The tyrosine phenol lyase (EC 4.1.99.2) from Citrobacter intermedius has been crystallised in the apo form by vapour diffusion. The space group is P2(1)2(1)2. The unit cell has dimensions a = 76.0 A, b = 138.3 A, c = 93.5 A and it contains two subunits of the tetrameric molecule in the asymmetric unit. Diffraction data for the native enzyme and two heavy atom derivatives have been collected with synchrotron radiation and an image plate scanner. The structure has been solved at 2.7 A resolution by isomorphous replacement with subsequent modification of the phases by averaging the density around the non-crystallographic symmetry axis. The electron density maps clearly show the relative orientation of the subunits and most of the trace of the polypeptide chain. Each subunit consists of two domains. The topology of the large domain appears to be similar to that of the aminotransferases.


Assuntos
Citrobacter/enzimologia , Fosfato de Piridoxal/farmacologia , Tirosina Fenol-Liase/química , Fenômenos Químicos , Físico-Química , Cristalização , Substâncias Macromoleculares , Conformação Proteica , Difração de Raios X
19.
J Mol Biol ; 214(3): 641-2, 1990 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-2201774

RESUMO

Single crystals of D-serine dehydratase from Escherichia coli complexed with 3-amino-2-hydroxypropionate have been obtained from ammonium sulfate solution (pH 7.0) by vapor diffusion. The crystals belong to the trigonal space group P3(1) or P3(2) with a = b = 81.3 A and c = 58.4 A. The asymmetric unit cell contains one protein molecule with Mr = 48,289. The crystals diffract to at least 3.0 A resolution and are suitable for X-ray structure analysis.


Assuntos
Escherichia coli/enzimologia , L-Serina Desidratase , Cristalização , Difração de Raios X
20.
J Mol Biol ; 214(1): 261-79, 1990 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-2196375

RESUMO

The crystal structure of thermitase, a subtilisin-type serine proteinase from Thermoactinomyces vulgaris, was determined by X-ray diffraction at 1.4 A resolution. The structure was solved by a combination of molecular and isomorphous replacement. The starting model was that of subtilisin BPN' from the Protein Data Bank, determined at 2.5 A resolution. The high-resolution refinement was based on data collected using synchrotron radiation with a Fuji image plate as detector. The model of thermitase refined to a conventional R factor of 14.9% and contains 1997 protein atoms, 182 water molecules and two Ca ions. The tertiary structure of thermitase is similar to that of the other subtilisins although there are some significant differences in detail. Comparison with subtilisin BPN' revealed two major structural differences. The N-terminal region in thermitase, which is absent in subtilisin BPN', forms a number of contacts with the tight Ca2+ binding site and indeed provides the very tight binding of the Ca ion. In thermitase the loop of residues 60 to 65 forms an additional (10) beta-strand of the central beta-sheet and the second Ca2+ binding site that has no equivalent in the subtilisin BPN' structure. The observed differences in the Ca2+ binding and the increased number of ionic and aromatic interactions in thermitase are likely sources of the enhanced stability of thermitase.


Assuntos
Endopeptidases , Serina Endopeptidases , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Endopeptidases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência do Ácido Nucleico , Subtilisinas , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...