Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(28): 10897-10904, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37266917

RESUMO

The reason for the absence of superconductivity in Sr2IrO4 was estimated by photoelectron spectra and photoelectron holograms. The analysis of the La photoelectron hologram concluded that La atoms are substituted to Sr sites. Two O 1s peaks were observed and were identified as the oxygens in the IrO2 and SrO planes by photoelectron holography and density functional theory (DFT) calculations. In the Ir 4f spectrum of Sr2IrO4, an unexpected Ir3+ peak was observed as much as 50% of all of the Ir. The photoelectron hologram of Ir3+ showed a displacement of about 0.15 Å. This displacement is thought to be due to the oxygen vacancies in the IrO2 plane. These oxygen vacancies and the associated local displacement of the atoms might inhibit superconductivity in spite of sufficient electron doping.

2.
Inorg Chem ; 59(24): 17945-17957, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33169615

RESUMO

Chemical modification of insulating material surfaces is an important methodology to improve the performance of organic field-effect transistors (OFETs). However, few redox-active self-assembled monolayers (SAMs) have been constructed on gate insulator film surfaces, in contrast to the numerous SAMs formed on many types of conducting electrodes. In this study, we report a new approach to introduce a π-conjugated organic fragment in close proximity to an insulating material surface via a transition metal center acting as a one-atom anchor. On the basis of the reported coordination chemistry of a catecholato complex of Pt(II) in solution, we demonstrate that ligand exchange can occur on an insulating material surface, affording SAMs on the SiO2 surface derived from a newly synthesized Pt(II) complex containing a benzothienobenzothiophene (BTBT) framework in the catecholato ligand. The resultant SAMs were characterized in detail by water contact angle measurements, X-ray photoelectron spectroscopy, atomic force microscopy, and cyclic voltammetry. The SAMs served as good scaffolds of π-conjugated pillars for forming thin films of a well-known organic semiconductor C8-BTBT (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene), accompanied by the engagements of the C8-BTBT molecules with the SAMs containing the common BTBT framework at the first layer on SiO2. OFETs containing the SAMs displayed improved performance in terms of hole mobility and onset voltage, presumably because of the unique interfacial structure between the organic semiconducting and inorganic insulating layers. These findings provide important insight into creating new elaborate interfaces through installing coordination chemistry in solution to solid surfaces, as well as OFET design by considering the compatibility between SAMs and organic semiconductors.

3.
ACS Appl Mater Interfaces ; 12(44): 50187-50191, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33084297

RESUMO

2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) is utilized as a p-type semiconductor layer in perovskite solar cells and solid-state dye-sensitized solar cells. Spiro-OMeTAD has been known to have a spiro center, leading to a random orientation. Although the molecular orientation of organic semiconductor materials influences the conductivity, which is directly related to semiconductor device characteristics, the molecular orientation of spiro-OMeTAD has not been fully discussed. In this study, we prepared spiro-OMeTAD layers on various substrates and investigated their orientation by grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine structure (NEXAFS). Additionally, we demonstrated that the molecular orientation of spiro-OMeTAD could be controlled by changing their surface energies by changing the substrate materials. Consequently, we could improve the electrical conductivity by improving its molecular orientation. The results of this study provide a guideline for the preparation of organic semiconductor material layers using the wet-coating method.

4.
ACS Omega ; 5(11): 6090-6099, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226892

RESUMO

An inexpensive, simple, and high-activity catalyst preparation method has been introduced in this work. Pt and RuO x catalysts were fabricated by soaking inexpensive graphite electrodes (pencil-lead graphite rod: PGR) in catalyst precursor solutions and using a simple flame-annealing method, which results in lower amount of Pt and RuO x catalyst layers. From X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure analysis, it has been found that platinum and ruthenium were deposited as zero-valence metal (Pt) and oxide (RuO x ), respectively. Catalytic activities of Pt/PGR and RuO x /PGR for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were evaluated using neutral 1 M Na2SO4 aqueous electrolyte, respectively. Although HER and OER currents using PGR without catalysts were -16 mA cm-2 (at -1.5 V vs Ag/AgCl) and +20 mA cm-2 (at +2.0 V vs Ag/AgCl), they were improved to -110 and +80 mA cm-2 with catalysts (Pt and RuO x ), respectively. Such an inexpensive and rapid catalyst electrode preparation method on PGR using flame-annealing is a very significant method in the initial catalyst activity evaluation requiring a large amount of trial and error.

5.
Phys Chem Chem Phys ; 18(39): 27102-27108, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27402555

RESUMO

The CH3NH3PbI3 perovskite solar cells have been fabricated using three-porous-layered electrodes as, 〈glass/F-doped tin oxide (FTO)/dense TiO2/porous TiO2-perovskite/porous ZrO2-perovskite/porous carbon-perovskite〉 for light stability tests. Without encapsulation in air, the CH3NH3PbI3 perovskite solar cells maintained 80% of photoenergy conversion efficiency from the initial value up to 100 h under light irradiation (AM 1.5, 100 mW cm-2). Considering the color variation of the CH3NH3PbI3 perovskite layer, the significant improvement of light stability is due to the moisture-blocking effect of the porous carbon back electrodes. The strong interaction between carbon and CH3NH3PbI3 perovskite was proposed by the measurements of X-ray photoelectron spectroscopy and X-ray diffraction of the porous carbon-perovskite layers.

6.
Phys Rev Lett ; 102(10): 105503, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392124

RESUMO

Nanoscale chemical imaging using scanning tunneling microscopy is demonstrated with a core-level excitation of the probed element by a synchrotron radiation light. Pronounced element-specific contrasts were observed in the spatial resolution of approximately 10 nm on checkerboard-patterned Ni and Fe samples in differential photoinduced current images taken with the scanning tunneling microscopy tip under the synchrotron radiation irradiation whose photon energies are above and below the Ni (Fe) L absorption edge. The local detection of the photoinduced secondary electrons through the surface barrier lowered by the proximate tip and/or via the tunneling process probably plays an important role in achieving the high-spatial resolution.

7.
Anal Sci ; 21(7): 779-81, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16038494

RESUMO

The Li 1s XPS (X-ray Photoelectron Spectroscopy) spectra of LiMn2O4, which is one of the major positive-electrode materials in lithium-ion rechargeable batteries, and MnO2 as a reference material, were measured by a laboratory-type XPS spectrometer. The Li 1s peak was not observed in the spectra excited by the Mg Kalpha line (1253.6 eV), because the Li 1s peak overlapped the background of the Mn 3p peak of LiMn2O4. The photoionization cross section of Mn 3p was larger than that of Li 1s for Mg Kalpha excitation. Therefore, the XPS measurement of LiMn2O4 by soft X-ray synchrotron excitation was carried out at beamline BL-7B on NewSUBARU synchrotron facility. Excitation energies of 110, 120, 130, 140, 150 and 151.4 eV were selected. The Li 1s peak was clearly observed in these XPS spectra. In order to investigate the excitation energy dependence, the area ratio of the Li 1s and Mn 3p peaks in the XPS spectra was plotted against the excitation energy. As a result, when the excitation energy was 110 eV, the area ratio had the maximum value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...