Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 43(2): 344-354, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29453460

RESUMO

BACKGROUND/OBJECTIVES: Ghrelin, a stomach-derived hormone implicated in numerous behaviors including feeding, reward, stress, and addictive behaviors, acts by binding to the growth hormone secretagogue receptor (GHSR). Here, we present the development, verification, and initial characterization of a novel GHSR knockout (KO) Wistar rat model created with CRISPR genome editing. METHODS: Using CRISPR/Cas9, we developed a GHSR KO in a Wistar background. Loss of GHSR mRNA expression was histologically verified using RNAscope in wild-type (WT; n = 2) and KO (n = 2) rats. We tested the effects of intraperitoneal acyl-ghrelin administration on food consumption and plasma growth hormone (GH) concentrations in WT (n = 8) and KO (n = 8) rats. We also analyzed locomotion, food consumption, and body fat composition in these animals. Body weight was monitored from early development to adulthood. RESULTS: The RNAscope analysis revealed an abundance of GHSR mRNA expression in the hypothalamus, midbrain, and hippocampus in WTs, and no observed probe binding in KOs. Ghrelin administration increased plasma GH levels (p = 0.0067) and food consumption (p = 0.0448) in WT rats but not KOs. KO rats consumed less food overall at basal conditions and weighed significantly less compared with WTs throughout development (p = 0.0001). Compared with WTs, KOs presented higher concentrations of brown adipose tissue (BAT; p = 0.0322). CONCLUSIONS: We have verified GHSR deletion in our KO model using histological, physiological, neuroendocrinological, and behavioral measures. Our findings indicate that GHSR deletion in rats is not only associated with a lack of response to ghrelin, but also associated with decreases in daily food consumption and body growth, and increases in BAT. This GHSR KO Wistar rat model provides a novel tool for studying the role of the ghrelin system in obesity and in a wide range of medical and neuropsychiatric disorders.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Receptores de Grelina/genética , Animais , Peso Corporal/genética , Química Encefálica/genética , Grelina/análise , Masculino , Ratos , Ratos Wistar
2.
Acta Neurochir Suppl ; 101: 89-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18642640

RESUMO

In the case of Parkinson's disease (PD), classical animal models have utilized dopaminergic neurotoxins such as 6-hydroxydopamine (6OHDA) and 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). More recently, human genetic linkage studies have identified several genes in familial forms of PD. Transgenic models have been made that explore the function of PD-linked genes (e.g. alpha-synuclein, DJ-1, LRRK2, Parkin, UCH-L1, PINK1). Recent evidence suggests mitochondrial dysfunction may play a major role in PD. Manipulation of mitochondrial respiratory genes (e.g. mitochondrial transcription factor A or TFAM) also elicits a PD phenotype in mice. Transgenic mice (MitoPark) were developed that have TFAM selectively knocked out in dopaminergic neurons. The nigral dopamine neurons of MitoPark mice show respiratory chain dysfunction, accompanied by the development of intraneuronal inclusions and eventual cell death. In early adulthood, the MitoPark mice show a slowly progressing loss of motor function that accompanies these cellular changes. The MitoPark mouse enables further study of the role of mitochondrial dysfunction in DA neurons as an important mechanism in the development of PD. Transgenic technology has allowed new insights into mechanisms of neurodegeneration for a number of neurological disorders. This paper will summarize recent studies on several transgenic models of PD.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos/genética , Doença de Parkinson/genética , Animais , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas Mitocondriais/genética , Mutação , Proteínas Oncogênicas/genética , Doença de Parkinson/etiologia , Proteína Desglicase DJ-1 , Proteínas Quinases/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
3.
Acta Neurochir Suppl ; 101: 93-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18642641

RESUMO

BACKGROUND: We previously demonstrated that exogenous application of bone morphogenetic protein 7 (BMP7) reduced 6-hydroxydopamine-mediated neurodegeneration in a rodent model of Parkinson's disease. The purpose of this study is to examine the endogenous neurotrophic properties of BMP Receptor II in dopaminergic neurons of the nigrostriatal pathway. METHODS: Adult male BMPRII dominant negative (BMPRIIDN) mice and their wild type controls (WT) were placed in the activity chambers for 3 days to monitor locomotor activity. Animals were sacrificed for tyrosine hydroxylase (TH) immunostaining. A subgroup of BMPRIIDN and WT mice were injected with high doses of methamphetamine (MA) and were sacrificed for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) histochemistry at 4 days after injection. RESULTS: BMPRIIDN mice had lower locomotor activity than the WT. There is a significant decrease in TH neuronal number in substantia nigra compacta, TH fiber density in the substantia nigra reticulata, and TH immunoreactivity in striatum in the BMPRIIDN mice, suggesting that deficiency in endogenous BMP signaling reduces dopaminergic innervation and motor function in the nigrostriatal pathway. Administration of MA increased TUNEL labeling in the substantia nigra in the BMPRIIDN mice. CONCLUSIONS: Endogenous BMPs have trophic effects on nigrostriatal dopaminergic neurons. Deficiency in BMP signaling increases vulnerability to insults induced by high doses of MA.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Análise de Variância , Animais , Comportamento Animal , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Morte Celular/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Metanfetamina/farmacologia , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Neuroscience ; 151(1): 92-103, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18082966

RESUMO

Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. We have previously demonstrated that pretreatment with bone morphogenetic protein 7 (BMP7) reduced 6-hydroxydopamine-mediated neurodegeneration in a rodent model of Parkinson's disease. In this study, we examined the neuroprotective effects of BMP7 against MA-mediated toxicity in dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase immunoreactivity (THir) while increasing terminal deoxynucleotidyl transferase-mediated dNTP nick end labeling. These toxicities were significantly antagonized by BMP7. Interaction of BMP7 and MA in vivo was first examined in CD1 mice. High doses of MA (10 mg/kgx4 s.c.) significantly reduced locomotor activity and THir in striatum. I.c.v. administration of BMP7 antagonized these changes. In BMP7 +/- mice, MA suppressed locomotor activity and reduced TH immunoreactivity in nigra reticulata to a greater degree than in wild type BMP7 +/+ mice, suggesting that deficiency in BMP7 expression increases vulnerability to MA insults. Since BMP7 +/- mice also carry a LacZ-expressing reporter allele at the BMP7 locus, the expression of BMP7 was indirectly measured through the enzymatic activity of beta-galactosidase (beta-gal) in BMP7 +/- mice. High doses of MA significantly suppressed beta-gal activity in striatum, suggesting that MA may inhibit BMP7 expression at the terminals of the nigrostriatal pathway. A similar effect was also found in CD1 mice in that high doses of MA suppressed BMP7 mRNA expression in nigra. In conclusion, our data indicate that MA can cause lesioning in the nigrostriatal dopaminergic terminals and that BMP7 is protective against MA-mediated neurotoxicity in central dopaminergic neurons.


Assuntos
Proteínas Morfogenéticas Ósseas/farmacologia , Estimulantes do Sistema Nervoso Central/antagonistas & inibidores , Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/antagonistas & inibidores , Metanfetamina/toxicidade , Fármacos Neuroprotetores , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Contagem de Células , Células Cultivadas , Feminino , Fator 2 de Diferenciação de Crescimento , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Gravidez , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tirosina 3-Mono-Oxigenase/metabolismo , beta-Galactosidase/metabolismo
5.
Cell Transplant ; 16(5): 483-91, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17708338

RESUMO

One therapeutic approach to stroke is the transplantation of cells capable of trophic support, reinnervation, and/or regeneration. Previously, we have described the use of novel truncated isoforms of SV40 large T antigen to generate unique cell lines from several primary rodent tissue types. Here we describe the generation of two cell lines, RTC3 and RTC4, derived from primary mesencephalic tissue using a fragment of mutant T antigen, T155c (cDNA) expressed from the RSV promoter. Both lines expressed the glial markers vimentin and S100beta, but not the neuronal markers NeuN, MAP2, or beta-III-tubulin. A screen for secreted trophic factors revealed substantially elevated levels of platelet-derived growth factor (PDGF) in RTC4, but not RTC3 cells. When transplanted into rat cortex, RTC4 cells survived for at least 22 days and expressed PDGF. Because PDGF has been reported to reduce ischemic injury, we examined the protective functions of RTC4 cells in an animal model of stroke. RTC4 or RTC3 cells, or vehicle, were injected into rat cortex 15-20 min prior to a 60-min middle cerebral artery ligation. Forty-eight hours later, animals were sacrificed and the stroke volume was assessed by triphenyl-tetrazolium chloride (TTC) staining. Compared to vehicle or RTC3 cells, transplanted RTC4 cells significantly reduced stroke volume. Overall, we generated a cell line with glial properties that produces PDGF and reduces ischemic injury in a rat model of stroke.


Assuntos
Mesencéfalo/citologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Morte Celular , Linhagem Celular Transformada , Sobrevivência Celular , Infarto Cerebral/induzido quimicamente , Infarto Cerebral/prevenção & controle , Modelos Animais de Doenças , Substâncias de Crescimento/metabolismo , Masculino , Mesencéfalo/transplante , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Brain Res ; 1022(1-2): 88-95, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15353217

RESUMO

Previous studies have demonstrated that pretreatment with bone morphogenetic protein-7 (BMP7) reduces ischemic neuronal injury in vivo. Moreover, exogenous application of BMP7 increases both the number of tyrosine hydroxylase (+) cells and dopamine (DA) uptake in rat mesencephalic cell cultures. The purpose of this study was to investigate the in vivo effects of BMP7 on 6-hydroxydopamine (6-OHDA) induced lesioning of midbrain DA neurons. Adult Fischer 344 rats were anesthetized and injected with BMP7 or vehicle into the left substantia nigra, followed by local administration of 9 microg of 6-OHDA into the left medial forebrain bundle. The lesioned animals that received BMP7 pretreatment, as compared to vehicle/6-OHDA controls, had a significant reduction in methamphetamine-induced rotation 1 month after the surgery. BMP7-pretreatment partially preserved KCl-induced dopamine release in the lesioned striatum and significantly increased TH immunoreactivity in the lesioned nigra and striatum. In summary, our data suggest that BMP7 has neuroprotective and/or neuroreparative effects against 6-OHDA lesioning of the nigrostriatal DA pathway in an animal model of Parkinson's disease (PD).


Assuntos
Proteínas Morfogenéticas Ósseas/uso terapêutico , Fatores de Crescimento Neural/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Adrenérgicos/toxicidade , Animais , Comportamento Animal , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/metabolismo , Contagem de Células/métodos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Eletroquímica/métodos , Imuno-Histoquímica/métodos , Masculino , Metanfetamina/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Potássio/farmacologia , Ratos , Ratos Endogâmicos F344 , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Exp Neurol ; 183(1): 47-55, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12957487

RESUMO

Direct intracerebral administration of glial cell line-derived neurotrophic factor (GDNF) is neuroprotective against ischemia-induced cerebral injury. Utilizing viral vectors to deliver and express therapeutic genes presents an opportunity to produce GDNF within localized regions of an evolving infarct. We investigated whether a herpes simplex virus (HSV) amplicon-based vector encoding GDNF (HSVgdnf) would protect neurons against ischemic injury. In primary cortical cultures HSVgdnf reduced oxidant-induced injury compared to the control vector HSVlac. To test protective effects in vivo, HSVgdnf or HSVlac was injected into the cerebral cortex 4 days prior to, or 3 days, after a 60-min unilateral occlusion of the middle cerebral artery. Control stroke animals developed bradykinesia and motor asymmetry; pretreatment with HSVgdnf significantly reduced such motor deficits. Animals receiving HSVlac or HSVgdnf after the ischemic insult did not exhibit any behavioral improvement. Histological analyses performed 1 month after stroke revealed a reduction in ischemic tissue loss in rats pretreated with HSVgdnf. Similarly, these animals exhibited less immunostaining for glial fibrillary acidic protein and the apoptotic marker caspase-3. Taken together, our data indicate that HSVgdnf pretreatment provides protection against cerebral ischemia and supports the utilization of the HSV amplicon for therapeutic delivery of trophic factors to the CNS.


Assuntos
Vetores Genéticos/administração & dosagem , Ataque Isquêmico Transitório/prevenção & controle , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/genética , Simplexvirus/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Caspase 3 , Caspases/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteína Glial Fibrilar Ácida/metabolismo , Peróxido de Hidrogênio/toxicidade , Imuno-Histoquímica , Ataque Isquêmico Transitório/patologia , Atividade Motora/efeitos dos fármacos , Fatores de Crescimento Neural/biossíntese , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Oxidantes/toxicidade , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Resultado do Tratamento
8.
Brain Behav Immun ; 11(4): 273-85, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9512815

RESUMO

Injury to the central nervous system (CNS) results in inflammation, increased trafficking of leukocytes into the CNS, induction of cytokines, and exacerbation of the primary injury. The increased trafficking of neutrophils into the CNS has been described following a number of injury models including stab, stroke, and excitotoxin-induced injury. This enhanced trafficking has largely been ascribed to the adhesion molecule intercellular adhesion molecule-1 (ICAM-1, CD54). In the current study, we wished to determine if the inflammation caused by irradiation of the CNS resulted in a similar induction of ICAM-1. C3H/HeJ mice were irradiated using gamma irradiation aimed over the right cerebral hemisphere. The relative induction of ICAM-1 mRNA levels was determined using quantitative RT-PCR 6 hours following irradiation with either 0, 5, 15, 25 or 35 Gy. ICAM-1 message was seen to exhibit a normal dose response curve with increasing mRNA levels seen at 15 Gy and higher. To determine the cellular distribution of the ICAM-1 protein following irradiation, mice were sacrificed at 4 hrs, 24 hrs, 48 hrs and 7 days following 25 Gy irradiation and the tissue was processed for ICAM-1 immunocytochemistry. ICAM-1 staining was seen to increase in both endothelial cells and astrocytes beginning as early as 4 hrs. The staining intensity continued to increase throughout the 7 day period observed. Together, these results suggest that irradiation of the CNS causes a rapid induction of both ICAM-1 mRNA and protein. This suggests that increased leukocyte trafficking into the CNS may exacerbate the inflammation induced by radiation injury.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Molécula 1 de Adesão Intercelular/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Circulação Cerebrovascular/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Raios gama , Molécula 1 de Adesão Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , RNA Mensageiro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...