Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(29): 20015-20025, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461994

RESUMO

This work investigates the mixed site occupancy of aluminium and silicon atoms in the ß-AlFeSi phase. For this purpose, the six mixed Al/Si sites of the ß-AlFeSi structure were considered independent and alternatively substituted by Al or Si, thus generating 64 ordered structures or end-members. The enthalpy of formation of each end-member was calculated by DFT. These calculations allowed us to derive the enthalpy of mixing of the solid solution at 0 K, over a wide range of chemical compositions, from the Al-Fe binary system to the Si-Fe binary system. In addition, the heat capacities of the solid solution were determined using a Debye model based on the calculation of the elastic constants and the equation of state of each end-member. These heat capacity values were used along with the enthalpy of formation we calculated to determine the Gibbs free energies of all the end-members of the ß-AlFeSi structure. Finally, the configurational entropy of mixing from the Compound Energy Formalism (CEF) for the configurational entropy of mixing was subsequently used to calculate the occupation fractions of the Si sites on the Al sites of the ß-AlFeSi structure, at 300 K and 938 K, the latter being the thermal decomposition temperature of this compound. These original site occupancy data were used to quantify the chemical ordering of the solid solution and to compare different sublattice (SL) models. We thus highlight that the SL model of the ß-AlFeSi solution most commonly accepted in the literature generates considerable errors in its thermodynamic description, contrary to the model proposed in this paper, which is both simple and particularly accurate, consisting in merging the sites Al(1)-Al(6), the sites Al(2)-Al(3) as well as the sites Al(4)-Al(5).

2.
Phys Chem Chem Phys ; 25(15): 10866-10884, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37013718

RESUMO

Classical molecular dynamics simulations of metallic systems have been extensively applied in recent years for the exploration of the energetic behavior of mesoscale structures and for the generation of thermodynamic and physical properties. The evaluation of the conditions leading to the melting of pure metals and alloys is particularly challenging as it involves at one point the simultaneous presence of both a solid and a liquid phase. Defects such as vacancies, dislocation, grain boundaries and pores typically promote the melting of a solid by locally increasing its free energy which favors the destruction of long-range ordering at the origin of this phase transition. In real materials, many of these defects are microscopic and cannot yet be modelled via conventional atomistic simulations. Still, molecular dynamics-based methodologies are commonly used to estimate the melting temperature of solids. These methods involve the use of mesoscale supercells with various nanoscale defects. Moreover, the deterministic nature of classical MD simulations requires the adequate selection of the initial configuration to be melted. In this context, the main objective of this paper is to quantify the precision of the existing classical molecular dynamics computational methods used to evaluate the melting point of pure compounds as well as the solidus/liquidus lines of Al-based binary metallic systems. We also aim to improve the methodology of different approaches such as the void method, the interface method as well as the grain method to obtain a precise evaluation of the melting behavior of pure metals and alloys. We carefully analyzed the importance of the local chemical ordering on the melting behavior. The ins and outs of different numerical methods in predicting the melting temperature via MD are discussed through several examples related to pure metallic elements, congruently and non-congruently melting compounds as well as binary solid solutions. It is shown that the defect distribution of the initial supercell configuration plays an important role upon the description of the melting mechanism of solids leading to a poor predictive capability of melting temperature if not properly controlled. A new methodology based on defect distribution within the initial configuration is proposed to overcome these limitations.

3.
MRS Energy Sustain ; 9(2): 212-247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569468

RESUMO

Abstract: Metals and alloys are among the most technologically important materials for our industrialized societies. They are the most common structural materials used in cars, airplanes and buildings, and constitute the technological core of most electronic devices. They allow the transportation of energy over great distances and are exploited in critical parts of renewable energy technologies. Even though primary metal production industries are mature and operate optimized pyrometallurgical processes, they extensively rely on cheap and abundant carbonaceous reactants (fossil fuels, coke), require high power heating units (which are also typically powered by fossil fuels) to calcine, roast, smelt and refine, and they generate many output streams with high residual energy content. Many unit operations also generate hazardous gaseous species on top of large CO2 emissions which require gas-scrubbing and capture strategies for the future. Therefore, there are still many opportunities to lower the environmental footprint of key pyrometallurgical operations. This paper explores the possibility to use greener reactants such as bio-fuels, bio-char, hydrogen and ammonia in different pyrometallurgical units. It also identifies all recycled streams that are available (such as steel and aluminum scraps, electronic waste and Li-ion batteries) as well as the technological challenges associated with their integration in primary metal processes. A complete discussion about the alternatives to carbon-based reduction is constructed around the use of hydrogen, metallo-reduction as well as inert anode electrometallurgy. The review work is completed with an overview of the different approaches to use renewable energies and valorize residual heat in pyrometallurgical units. Finally, strategies to mitigate environmental impacts of pyrometallurgical operations such as CO2 capture utilization and storage as well as gas scrubbing technologies are detailed. This original review paper brings together for the first time all potential strategies and efforts that could be deployed in the future to decrease the environmental footprint of the pyrometallurgical industry. It is primarily intended to favour collaborative work and establish synergies between academia, the pyrometallurgical industry, decision-makers and equipment providers. Highlights: A more sustainable production of metals using greener reactants, green electricity or carbon capture is possible and sometimes already underway. More investments and pressure are required to hasten change. Discussion: Is there enough pressure on the aluminum and steel industries to meet the set climate targets?The greenhouse gas emissions of existing facilities can often be partly mitigated by retrofitting them with green technologies, should we close plants prematurely to build new plants using greener technologies?Since green or renewable resources presently have limited availability, in which sector should we use them to maximize their benefits?

4.
Phys Chem Chem Phys ; 24(37): 22605-22623, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102884

RESUMO

Multi-component and multiphasic materials are continually being developed for electronics, aircraft, automotive, and general applications. Integrated Computational Materials Engineering (ICME) is a multiple-length scale approach that greatly benefits from atomistic scale simulations to explore new alloys. Molecular Dynamics (MD) allows to perform large-scale simulations by using classical interatomic potentials. The main challenge of using such a classical approach is the transferability of the interatomic potentials from one structure to another when one aims to study multi-component systems. In this work, the reliability of Zr, Al-Cu, Al-Cr and Al-Zr-Ti force field potentials is examined. It has been found that current interatomic potentials are not completely transferable due to the structure dependence from their parameterization. Besides that, they provide an appropriate description of unary and binary systems, notably for liquids, isotropic solids, and partially isotropic compounds. For solidification purposes, it has been found that coherent primary solidification of the FCC-phase in pure Al is highly dependent on the formalism to tune interatomic interactions. For Al-Cr alloys, the icosahedral short-range ordering (ISRO) increased by adding Cr to the melts. The different steps of solidification (formation of nuclei, effective germination of the α-Al phase and end of solidification) have been related to the evolution of the ISRO. The addition of Cr in melts prevented undercooling via icosahedral-enhanced nucleation of the α-Al phase. Precipitation of primary intermetallics in hyper-peritectic Al-Cr alloys was also tested. Contrary to classical thermodynamics predictions, α-Al phase was the primary precipitate for these alloys. This implies that Cr supersaturated the α-Al phase rather than forming intermetallic phases due to the high cooling rates.

5.
Phys Chem Chem Phys ; 23(2): 733-752, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33427279

RESUMO

As the field of ionic liquids matures to more industrially implemented applications, robust models of their physico-chemical properties become necessary for process optimization. Viscosity is a particularly difficult property to model since there is no generally accepted theory for the viscosity of liquids. This paper aims to review the viscosity models developed or adapted to ionic liquids and their mixtures that are available in the literature. The scope of application and limitations of these models are discussed. In particular, the mixing rules' current formalism for ionic liquids is analysed in light of established knowledge from the inorganic molten salt community.

6.
Phys Chem Chem Phys ; 22(35): 19999-20013, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32869795

RESUMO

Thermodynamic models of solid solutions used in computational thermochemistry have not been modernized in recent years. With the advent of fast and cheap computers, it is nowadays possible to add, at a minimal computational cost, physical ingredients such as coordination numbers, inter-atomic distances and classical interatomic potentials to the function describing the energetics of ordered and disordered solid solutions. As we show here, the integration of these elements into a robust statistical thermodynamic model of solution establishes natural connections with other deterministic and stochastic atomistic methods such as Monte Carlo and molecular dynamics simulations. Ultimately, all these numerical approaches need to be self-consistent and generate complementary sets of numerical thermo-physical properties. The present work proposes a new formalism to define the Gibbs free energy of ordered and disordered solid solutions. It allows for a complete prediction of the thermal, volumetric and compositional dependence of the Gibbs free energy by solving a constrained minimization problem. As a proof of concept, we explore the energetic behavior of pure face-centered cubic gold as well as the AuCu L10 ordered solution as a function of both temperature and pressure. We finally compare these results with the average properties obtained from classical molecular dynamics simulations and explain the origin of the existing differences between the two approaches based on how the temperature is accounted for in each method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...