Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2087-2103.e8, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38815579

RESUMO

RNA splicing is pivotal in post-transcriptional gene regulation, yet the exponential expansion of intron length in humans poses a challenge for accurate splicing. Here, we identify hnRNPM as an essential RNA-binding protein that suppresses cryptic splicing through binding to deep introns, maintaining human transcriptome integrity. Long interspersed nuclear elements (LINEs) in introns harbor numerous pseudo splice sites. hnRNPM preferentially binds at intronic LINEs to repress pseudo splice site usage for cryptic splicing. Remarkably, cryptic exons can generate long dsRNAs through base-pairing of inverted ALU transposable elements interspersed among LINEs and consequently trigger an interferon response, a well-known antiviral defense mechanism. Significantly, hnRNPM-deficient tumors show upregulated interferon-associated pathways and elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity by repressing cryptic splicing and suggest that targeting hnRNPM in tumors may be used to trigger an inflammatory immune response, thereby boosting cancer surveillance.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo M , Íntrons , Elementos Nucleotídeos Longos e Dispersos , Splicing de RNA , RNA de Cadeia Dupla , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Interferons/metabolismo , Interferons/genética , Animais , Células HEK293 , Camundongos , Transcriptoma , Éxons , Sítios de Splice de RNA , Elementos Alu/genética
2.
Hum Pathol ; 148: 23-31, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677555

RESUMO

AIMS: Appendiceal mucinous neoplasms feature neoplastic mucinous epithelium with pushing borders and densely fibrotic walls. We have identified five examples of analogous colorectal tumours. METHODS AND RESULTS: Slides, pathology reports, and clinical data were reviewed. Whole genome sequencing was performed in two cases. Three were women and the mean age was 70. Associated GI conditions included Crohn's disease [1], diverticulosis [2], and sarcoma of the terminal ileum [1]. Signs/symptoms included obstruction [2], nausea, vomiting, abdominal pain [1], and positive faecal immunohistochemical test [1]. Colonoscopic findings included narrowing [1], "fullness" [1], and caecal lesion concerning for GIST [1]. Tumours involved the rectosigmoid [2], sigmoid [1], transverse colon [1], and cecum [1] and ranged from 1.5 cm to 8.5 cm. All but one tumour arose in the setting of faecal stream abnormalities related to obstruction, diverticulosis, or bowel diversion. All cases showed columnar, variably mucinous epithelium associated with little-to-no lamina propria. All but one case showed fibrosis of the submucosa. Three cases had high-grade areas. Neoplastic glands and/or mucin dissected through the muscularis propria or subserosa in 3 examples. No extracolonic neoplastic cells/mucin, infiltrative invasion, or desmoplastic response were identified. Three patients with available follow-up [5.5-28 months] are alive. Whole genome sequencing identified pathogenic TP53 and ERBB2 variants, as well as ERBB2 copy number amplification in one high-grade example. CONCLUSIONS: Though these tumours share clinicopathologic characteristics with their appendiceal counterparts, our cohort is too small to draw solid conclusions. We propose the term "extra-appendiceal mucinous neoplasm [EAMN]" for these rare lesions.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias do Apêndice , Humanos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/genética , Neoplasias do Apêndice/patologia , Neoplasias do Apêndice/genética , Neoplasias do Apêndice/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Idoso de 80 Anos ou mais , Gradação de Tumores , Sequenciamento Completo do Genoma , Mutação
3.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865202

RESUMO

RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.

4.
Cancer Cytopathol ; 131(6): 351-359, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794999

RESUMO

BACKGROUND: The Paris System for Reporting Urine Cytology defines objective (elevated nuclear/cytoplasmic ratio ≥0.7) and subjective (nuclear membrane irregularity, hyperchromicity, and coarse chromatin) cytomorphologic criteria to identify conventional high-grade urothelial carcinoma (HGUC) cells. Digital image analysis allows quantitative and objective measurement of these subjective criteria. In this study, digital image analysis was used to quantitate nuclear membrane irregularity in HGUC cells. METHODS: Whole-slide images of HGUC urine specimens were acquired, and HGUC nuclei were manually annotated using the open-source bioimage analysis software QuPath. Custom scripts were used to calculate nuclear morphometrics and perform downstream analysis. RESULTS: In total, 1395 HGUC cell nuclei were annotated across 24 HGUC specimens (48.1 ± 6.0 nuclei per case) using both pixel-level and smooth annotation approaches. Nuclear membrane irregularity was estimated by calculating nuclear circularity and solidity. Annotating at pixel-level resolution artifactually increases nuclear membrane perimeter, thus smoothing is necessary to better approximate a pathologist's assessment of nuclear membrane irregularity. After smoothing, nuclear circularity and solidity discriminate between HGUC cell nuclei with visually apparent differences in nuclear membrane irregularity. CONCLUSIONS: Nuclear membrane irregularity defined by The Paris System for Reporting Urine Cytology is inherently subjective. This study identifies nuclear morphometrics that visually correlate with nuclear membrane irregularity. HGUC specimens show intercase variation in nuclear morphometrics, with some nuclei appearing remarkably regular while others show marked irregularity. A small population of irregular nuclei generates most of the intracase variation in nuclear morphometrics. These results highlight nuclear membrane irregularity as an important, but not definitive, cytomorphologic criterion in HGUC diagnosis.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Sistema Urinário , Neoplasias Urológicas , Humanos , Neoplasias da Bexiga Urinária/patologia , Carcinoma de Células de Transição/patologia , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/patologia , Membrana Nuclear/patologia , Urotélio/patologia , Sistema Urinário/patologia , Citodiagnóstico/métodos , Urina
5.
Methods Mol Biol ; 2372: 209-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34417755

RESUMO

Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semiquantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We will also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.


Assuntos
Processamento Alternativo , Animais , Éxons , Isoformas de Proteínas/genética , Splicing de RNA
6.
RNA ; 26(9): 1257-1267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467311

RESUMO

During breast cancer metastasis, the developmental process epithelial-mesenchymal transition (EMT) is abnormally activated. Transcriptional regulatory networks controlling EMT are well-studied; however, alternative RNA splicing also plays a critical regulatory role during this process. A comprehensive understanding of alternative splicing (AS) and the RNA binding proteins (RBPs) that regulate it during EMT and their impact on breast cancer remains largely unknown. In this study, we annotated AS in the breast cancer TCGA data set and identified an AS signature that is capable of distinguishing epithelial and mesenchymal states of the tumors. This AS signature contains 25 AS events, among which nine showed increased exon inclusion and 16 showed exon skipping during EMT. This AS signature accurately assigns the EMT status of cells in the CCLE data set and robustly predicts patient survival. We further developed an effective computational method using bipartite networks to identify RBP-AS networks during EMT. This network analysis revealed the complexity of RBP regulation and nominated previously unknown RBPs that regulate EMT-associated AS events. This study highlights the importance of global AS regulation during EMT in cancer progression and paves the way for further investigation into RNA regulation in EMT and metastasis.


Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , RNA/genética , Linhagem Celular Tumoral , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Células MCF-7 , Proteínas de Ligação a RNA/genética
7.
Nat Commun ; 11(1): 486, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980632

RESUMO

Alternative splicing has been shown to causally contribute to the epithelial-mesenchymal transition (EMT) and tumor metastasis. However, the scope of splicing factors that govern alternative splicing in these processes remains largely unexplored. Here we report the identification of A-Kinase Anchor Protein (AKAP8) as a splicing regulatory factor that impedes EMT and breast cancer metastasis. AKAP8 not only is capable of inhibiting splicing activity of the EMT-promoting splicing regulator hnRNPM through protein-protein interaction, it also directly binds to RNA and alters splicing outcomes. Genome-wide analysis shows that AKAP8 promotes an epithelial cell state splicing program. Experimental manipulation of an AKAP8 splicing target CLSTN1 revealed that splice isoform switching of CLSTN1 is crucial for EMT. Moreover, AKAP8 expression and the alternative splicing of CLSTN1 predict breast cancer patient survival. Together, our work demonstrates the essentiality of RNA metabolism that impinges on metastatic breast cancer.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Processamento Alternativo/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Células HCT116 , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Nucleic Acids Res ; 47(7): 3667-3679, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698802

RESUMO

RNA secondary structures have been increasingly recognized to play an important regulatory role in post-transcriptional gene regulation. We recently showed that RNA G-quadruplexes, which serve as cis-elements to recruit splicing factors, play a critical role in regulating alternative splicing during the epithelial-mesenchymal transition. In this study, we performed a high-throughput screen using a dual-color splicing reporter to identify chemical compounds capable of regulating G-quadruplex-dependent alternative splicing. We identify emetine and its analog cephaeline as small molecules that disrupt RNA G-quadruplexes, resulting in inhibition of G-quadruplex-dependent alternative splicing. Transcriptome analysis reveals that emetine globally regulates alternative splicing, including splicing of variable exons that contain splice site-proximal G-quadruplexes. Our data suggest the use of emetine and cephaeline for investigating mechanisms of G-quadruplex-associated alternative splicing.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , RNA/química , Processamento Alternativo/genética , Emetina/farmacologia , Éxons/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/efeitos dos fármacos , Splicing de RNA/genética , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia
9.
RNA ; 24(10): 1326-1338, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30042172

RESUMO

The epithelial-mesenchymal transition (EMT) is a fundamental developmental process that is abnormally activated in cancer metastasis. Dynamic changes in alternative splicing occur during EMT. ESRP1 and hnRNPM are splicing regulators that promote an epithelial splicing program and a mesenchymal splicing program, respectively. The functional relationships between these splicing factors in the genome scale remain elusive. Comparing alternative splicing targets of hnRNPM and ESRP1 revealed that they coregulate a set of cassette exon events, with the majority showing discordant splicing regulation. Discordant splicing events regulated by hnRNPM show a positive correlation with splicing during EMT; however, concordant events do not, indicating the role of hnRNPM in regulating alternative splicing during EMT is more complex than previously understood. Motif enrichment analysis near hnRNPM-ESRP1 coregulated exons identifies guanine-uridine rich motifs downstream from hnRNPM-repressed and ESRP1-enhanced exons, supporting a general model of competitive binding to these cis-elements to antagonize alternative splicing. The set of coregulated exons are enriched in genes associated with cell migration and cytoskeletal reorganization, which are pathways associated with EMT. Splicing levels of coregulated exons are associated with breast cancer patient survival and correlate with gene sets involved in EMT and breast cancer subtyping. This study identifies complex modes of interaction between hnRNPM and ESRP1 in regulation of splicing in disease-relevant contexts.


Assuntos
Processamento Alternativo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Motivos de Nucleotídeos , Prognóstico , Ligação Proteica , Reprodutibilidade dos Testes
10.
Genes Dev ; 31(22): 2296-2309, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269483

RESUMO

It is generally thought that splicing factors regulate alternative splicing through binding to RNA consensus sequences. In addition to these linear motifs, RNA secondary structure is emerging as an important layer in splicing regulation. Here we demonstrate that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Destroying G-quadruplex-forming capacity while keeping G tracts intact abrogates exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in heterogeneous nuclear ribonucleoprotein F (hnRNPF)-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome. Moreover, hnRNPF regulates an epithelial-mesenchymal transition (EMT)-associated CD44 isoform switch in a G-quadruplex-dependent manner, which results in inhibition of EMT. Mining breast cancer TCGA (The Cancer Genome Atlas) data sets, we demonstrate that hnRNPF negatively correlates with an EMT gene signature and positively correlates with patient survival. These data suggest a critical role for RNA G quadruplexes in regulating alternative splicing. Modulation of G-quadruplex structural integrity may control cellular processes important for tumor progression.


Assuntos
Processamento Alternativo , Quadruplex G , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , RNA/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular , Transição Epitelial-Mesenquimal , Éxons , Feminino , Humanos , Receptores de Hialuronatos/genética , Invasividade Neoplásica , RNA/metabolismo , Precursores de RNA/química
11.
Methods Mol Biol ; 1402: 229-241, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26721495

RESUMO

Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.


Assuntos
Processamento Alternativo , RNA/genética , Animais , Éxons , Células HEK293 , Humanos , Sondas RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transfecção
12.
J Bacteriol ; 196(19): 3421-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25022855

RESUMO

The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.


Assuntos
Adesinas Bacterianas/genética , Helicobacter pylori/genética , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Adesinas Bacterianas/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/metabolismo , Dados de Sequência Molecular
13.
PLoS One ; 6(10): e26750, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22053209

RESUMO

Five newly isolated mycobacteriophages--Angelica, CrimD, Adephagia, Anaya, and Pixie--have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them--with the exception of TM4--form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species.


Assuntos
Evolução Molecular , Micobacteriófagos/genética , Sítios de Ligação Microbiológicos , Sequência de Bases , Mapeamento Cromossômico , Análise por Conglomerados , Sequência Conservada/genética , Deleção de Genes , Genoma Viral/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica/genética , Mutação/genética , Micobacteriófagos/crescimento & desenvolvimento , Micobacteriófagos/isolamento & purificação , Micobacteriófagos/ultraestrutura , Análise de Sequência de DNA , Temperatura , Proteínas Virais/genética , Vírion/genética , Vírion/ultraestrutura , Integração Viral/genética , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...