Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511288

RESUMO

Neonatal seizures are commonly associated with acute perinatal brain injury, while understanding regarding the downstream molecular pathways related to seizures remains unclear. Furthermore, effective treatment and reliable biomarkers are still lacking. Post-translational modifications can contribute to changes in protein function, and post-translational citrullination, which is caused by modification of arginine to citrulline via the calcium-mediated activation of the peptidylarginine deiminase (PAD) enzyme family, is being increasingly linked to neurological injury. Extracellular vesicles (EVs) are lipid-bilayer structures released from cells; they can be isolated from most body fluids and act as potential liquid biomarkers for disease conditions and response to treatment. As EVs carry a range of genetic and protein cargo that can be characteristic of pathological processes, the current study assessed modified citrullinated protein cargo in EVs isolated from plasma and CSF in a piglet neonatal seizure model, also following phenobarbitone treatment. Our findings provide novel insights into roles for PAD-mediated changes on EV signatures in neonatal seizures and highlight the potential of plasma- and CSF-EVs to monitor responses to treatment.


Assuntos
Citrulinação , Vesículas Extracelulares , Recém-Nascido , Humanos , Animais , Suínos , Desiminases de Arginina em Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Convulsões/metabolismo
3.
Pediatr Res ; 94(5): 1675-1683, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37308684

RESUMO

BACKGROUND: Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS: Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS: CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION: Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT: This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.


Assuntos
Hipóxia-Isquemia Encefálica , Lactente , Humanos , Animais , Suínos , Hipóxia-Isquemia Encefálica/terapia , Neuroproteção , Biomarcadores , Encéfalo/metabolismo , Animais Recém-Nascidos
4.
Front Pediatr ; 10: 1008539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268041

RESUMO

Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.

5.
Cells ; 11(16)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36010678

RESUMO

BACKGROUND: Neonatal seizures remain a significant cause of morbidity and mortality worldwide. The past decade has resulted in substantial progress in seizure detection and understanding the impact seizures have on the developing brain. Optical monitoring such as cerebral near-infrared spectroscopy (NIRS) and broadband NIRS can provide non-invasive continuous real-time monitoring of the changes in brain metabolism and haemodynamics. AIM: To perform a systematic review of optical biomarkers to identify changes in cerebral haemodynamics and metabolism during the pre-ictal, ictal, and post-ictal phases of neonatal seizures. METHOD: A systematic search was performed in eight databases. The search combined the three broad categories: (neonates) AND (NIRS) AND (seizures) using the stepwise approach following PRISMA guidance. RESULTS: Fifteen papers described the haemodynamic and/or metabolic changes observed with NIRS during neonatal seizures. No randomised controlled trials were identified during the search. Studies reported various changes occurring in the pre-ictal, ictal, and post-ictal phases of seizures. CONCLUSION: Clear changes in cerebral haemodynamics and metabolism were noted during the pre-ictal, ictal, and post-ictal phases of seizures in neonates. Further studies are necessary to determine whether NIRS-based methods can be used at the cot-side to provide clear pathophysiological data in real-time during neonatal seizures.


Assuntos
Epilepsia , Doenças do Recém-Nascido , Encéfalo/metabolismo , Epilepsia/metabolismo , Humanos , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Convulsões/diagnóstico , Convulsões/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Front Pediatr ; 9: 653676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898363

RESUMO

Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.

7.
Pediatr Res ; 80(2): 190-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27064242

RESUMO

BACKGROUND: In sub-Saharan Africa, the timing and nature of brain injury and their relation to mortality in neonatal encephalopathy (NE) are unknown. We evaluated cranial ultrasound (cUS) scans from term Ugandan infants with and without NE for evidence of brain injury. METHODS: Infants were recruited from a national referral hospital in Kampala. Cases (184) had NE and controls (100) were systematically selected unaffected term infants. All had cUS scans <36 h reported blind to NE status. RESULTS: Scans were performed at median age 11.5 (interquartile range (IQR): 5.2-20.2) and 8.4 (IQR: 3.6-13.5) hours, in cases and controls respectively. None had established antepartum injury. Major evolving injury was reported in 21.2% of the cases vs. 1.0% controls (P < 0.001). White matter injury was not significantly associated with bacteremia in encephalopathic infants (odds ratios (OR): 3.06 (95% confidence interval (CI): 0.98-9.60). Major cUS abnormality significantly increased the risk of neonatal death (case fatality 53.9% with brain injury vs. 25.9% without; OR: 3.34 (95% CI: 1.61-6.95)). CONCLUSION: In this low-resource setting, there was no evidence of established antepartum insult, but a high proportion of encephalopathic infants had evidence of major recent and evolving brain injury on early cUS imaging, suggesting prolonged or severe acute exposure to hypoxia-ischemia (HI). Early abnormalities were a significant predictor of death.


Assuntos
Encefalopatias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Ultrassonografia , Lesões Encefálicas/diagnóstico por imagem , Estudos de Casos e Controles , Ecoencefalografia , Feminino , Humanos , Hipóxia/fisiopatologia , Recém-Nascido , Isquemia/fisiopatologia , Masculino , Encaminhamento e Consulta , Risco , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...