Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 30(6): 615-623, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34414615

RESUMO

Body pigmentation is an important character of insects in adapting to biotic and abiotic environmental challenges. Additionally, based on the relative ease of screening, several genes involved in insect melanization have been used in classic genetic studies or as visual markers in constructing transgenic insects. Here, a homologue of the Bombyx mori melanization-inhibiting gene ebony, associated with the conversion of dopamine to N-ß-alanyl dopamine, was identified in a global pest, Plutella xylostella. The CRISPR/Cas9 system was applied to generate multiple Pxebony knockout alleles which were crossed to produce a Pxebony knockout strain, showing darker pigmentation in larvae, pupae and adults, compared with wildtype. Interestingly, we observed that Pxebony heterozygotes displayed an intermediate darkened phenotype, indicating partial dominance between the knockout and wildtype alleles. The fitness costs of Pxebony deficiency were also assessed in the mutant strain, indicating that embryo hatchability and larval survival were significantly reduced, while the eclosion rate was not obviously affected. Our work provides a potential target for exploring CRISPR-based genetics-control systems in this economically important pest lepidopteran.


Assuntos
Sistemas CRISPR-Cas , Mariposas , Pigmentação , Animais , Dopamina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Mariposas/genética , Mariposas/metabolismo , Pigmentação/genética
2.
Insect Mol Biol ; 29(2): 231-240, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793118

RESUMO

Recently, a novel sex-determination system was identified in the silkworm (Bombyx mori) in which a piwi-interacting RNA (piRNA) encoded on the female-specific W chromosome silences a Z-linked gene (Masculinizer) that would otherwise initiate male sex-determination and dosage compensation. Masculinizer provides various opportunities for developing improved genetic pest management tools. A pest lepidopteran in which a genetic pest management system has been developed, but which would benefit greatly from such improved designs, is the diamondback moth, Plutella xylostella. However, Masculinizer has not yet been identified in this species. Here, focusing on the previously described 'masculinizing' domain of B. mori Masculinizer, we identify P. xylostella Masculinizer (PxyMasc). We show that PxyMasc is Z-linked, regulates sex-specific alternative splicing of doublesex and is necessary for male survival. Similar results in B. mori suggest this survival effect is possibly through failure to initiate male dosage compensation. The highly conserved function and location of this gene between these two distantly related lepidopterans suggests a deep role for Masculinizer in the sex-determination systems of the Lepidoptera.


Assuntos
Cromossomos de Insetos/genética , Proteínas de Insetos/genética , Mariposas/genética , Cromossomos Sexuais/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Mariposas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...