Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 99(2): 231-243, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401957

RESUMO

Hepatic fibrosis is the central cause of chronic clinical pathology resulting from infection by the blood flukes Schistosoma japonicum or S. mansoni. Much has been elucidated regarding the molecular, cellular and immunological responses that correspond to the formation of the granulomatous response to trapped schistosome eggs. A central feature of this Th2 response is the deposition of collagen around the periphery of the granuloma. To date, traditional histology and transcriptional methods have been used to quantify the deposition of collagen and to monitor the formation of the hepatic granuloma during experimental animal models of schistosomiasis. We have investigated the dynamic nature of granuloma formation through the use of a transgenic mouse model (B6.Collagen 1(A) luciferase mice (B6.Coll 1A-luc+)). With this model and whole-animal bioluminescence imaging, we followed the deposition of collagen during an active schistosome infection with Chinese and Philippines geographical strains of S. japonicum and after clearance of the adult parasites by the drug praziquantel. Individual mice were re-imaged over the time course to provide robust real-time quantitation of the development of chronic fibrotic disease. This model provides an improved method to follow the course of hepatic schistosomiasis-induced hepatic pathology and effectively supports the current dogma of the formation of hepatic fibrosis, originally elucidated from static traditional histology. This study demonstrates the first use of the B6.Coll 1A-luc+ mouse to monitor the dynamics of disease development and the treatment of pathogen-induced infection with the underlying pathology of fibrosis.


Assuntos
Colágeno/metabolismo , Cirrose Hepática/metabolismo , Esquistossomose/metabolismo , Animais , Colágeno/genética , Modelos Animais de Doenças , Feminino , Histocitoquímica , Fígado/diagnóstico por imagem , Fígado/metabolismo , Fígado/parasitologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/parasitologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Imagem Óptica , Schistosoma japonicum , Esquistossomose/complicações , Esquistossomose/diagnóstico por imagem , Esquistossomose/parasitologia
2.
Arthritis Rheumatol ; 67(6): 1535-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25624153

RESUMO

OBJECTIVE: Chlamydia trachomatis is a sexually transmitted obligate intracellular pathogen that causes inflammatory reactive arthritis, spondylitis, psoriasiform dermatitis, and conjunctivitis in some individuals after genital infection. The immunologic basis for this inflammatory response in susceptible hosts is poorly understood. As ZAP-70(W163C) -mutant BALB/c (SKG) mice are susceptible to spondylo-arthritis after systemic exposure to microbial ß-glucan, we undertook the present study to compare responses to infection with Chlamydia muridarum in SKG mice and BALB/c mice. METHODS: After genital or respiratory infection with C muridarum, conjunctivitis and arthritis were assessed clinically, and eye, skin, and joint specimens were analyzed histologically. Chlamydial major outer membrane protein antigen-specific responses were assessed in splenocytes. Treg cells were depleted from FoxP3-DTR BALB/c or SKG mice, and chlamydial DNA was quantified by polymerase chain reaction. RESULTS: Five weeks after vaginal infection with live C muridarum, arthritis, spondylitis, and psoriasiform dermatitis developed in female SKG mice, but not in BALB/c mice. Inflammatory bowel disease did not occur in mice of either strain. The severity of inflammatory disease was correlated with C muridarum inoculum size and vaginal burden postinoculation. Treatment with combination antibiotics starting 1 day postinoculation prevented disease. Chlamydial antigen was present in macrophages and spread from the infection site to lymphoid organs and peripheral tissue. In response to chlamydial antigen, production of interferon-γ and interleukin-17 was impaired in T cells from SKG mice but tumor necrosis factor (TNF) responses were exaggerated, compared to findings in T cells from BALB/c mice. Unlike previous observations in arthritis triggered by ß-glucan, no autoantibodies developed. Accelerated disease triggered by depletion of Treg cells was TNF dependent. CONCLUSION: In the susceptible SKG strain, Chlamydia-induced reactive arthritis develops as a result of deficient intracellular pathogen control, with antigen-specific TNF production upon dissemination of antigen, and TNF-dependent inflammatory disease.


Assuntos
Anticorpos Antibacterianos/imunologia , Artrite Reativa/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Infecções do Sistema Genital/imunologia , Infecções Respiratórias/imunologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Feminino , Doenças Inflamatórias Intestinais/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Psoríase/imunologia , Linfócitos T/imunologia , Vaginose Bacteriana
3.
Immunology ; 143(4): 520-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24827556

RESUMO

Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR(-/-) mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa/imunologia , Animais , Especificidade de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Linhagem Celular , Infecções por Chlamydia/metabolismo , Chlamydia muridarum/imunologia , Modelos Animais de Doenças , Humanos , Imunoglobulina A Secretora/isolamento & purificação , Masculino , Camundongos , Camundongos Knockout , Mucosa/metabolismo , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo
4.
Immunol Cell Biol ; 92(5): 417-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24445600

RESUMO

Antibodies can have a protective but non-essential role in natural chlamydial infections dependent on antigen specificity and antibody isotype. IgG is the dominant antibody in both male and female reproductive tract mucosal secretions, and is bi-directionally trafficked across epithelia by the neonatal Fc receptor (FcRn). Using pH-polarized epididymal epithelia grown on Transwells, IgG specifically targeted at an extracellular chlamydial antigen; the major outer membrane protein (MOMP), enhanced uptake and translocation of infection at pH 6-6.5 but not at neutral pH. This was dependent on FcRn expression. Conversely, FcRn-mediated transport of IgG targeting the intracellular chlamydial inclusion membrane protein A (IncA), induced aberrant inclusion morphology, recruited autophagic proteins independent of lysosomes and significantly reduced infection. Challenge of female mice with MOMP-specific IgG-opsonized Chlamydia muridarum delayed infection clearance but exacerbated oviduct occlusion. In male mice, MOMP-IgG elicited by immunization afforded no protection against testicular chlamydial infection, whereas the transcytosis of IncA-IgG significantly reduced testicular chlamydial burden. Together these data show that the protective and pathological effects of IgG are dependent on FcRn-mediated transport as well as the specificity of IgG for intracellular or extracellular antigens.


Assuntos
Antígenos de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Imunoglobulina G/imunologia , Transcitose/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Infecções por Chlamydia/genética , Infecções por Chlamydia/patologia , Modelos Animais de Doenças , Espaço Extracelular/imunologia , Feminino , Inativação Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Espaço Intracelular/imunologia , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Receptores Fc/genética , Receptores Fc/metabolismo , Transcitose/genética
5.
Immunol Cell Biol ; 92(3): 287-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366518

RESUMO

Most vaccines developed against Chlamydia using animal models provide partial protection against a genital tract infection. However, protection against the oviduct pathology associated with infertility is highly variable and often has no defining immunological correlate. When comparing two adjuvants (CTA1-DD and a combination of Cholera toxin plus CpG-oligodeoxynucleotide-CT/CpG) combined with the chlamydial major outer membrane protein (MOMP) antigen and delivered via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, we identified two vaccine groups with contrasting outcomes following infection. SL immunization with MOMP/CTA1-DD induced a 70% reduction in the incidence of oviduct pathology, without significantly altering the course of infection. Conversely, IN immunization with MOMP/CT/CpG prevented an ascending infection, but not the oviduct pathology. This anomaly presented a unique opportunity to study the mechanisms by which vaccines can prevent oviduct pathology, other than by controlling the infection. The IL-17 signaling in the oviducts was found to associate with both the enhancement of immunity to infection and the development of oviduct pathology. This conflicting role of IL-17 may provide some explanation for the discordance in protection between infection and disease and suggests that controlling immunopathology, as opposed to the rapid eradication of the infection, may be essential for an effective human chlamydial vaccine that prevents infertility.


Assuntos
Infecções por Chlamydia/imunologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/imunologia , Imunidade , Interleucina-17/metabolismo , Transdução de Sinais/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Especificidade de Anticorpos/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Separação Celular , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/prevenção & controle , Citocinas/biossíntese , Feminino , Regulação da Expressão Gênica , Imunidade/genética , Mediadores da Inflamação/metabolismo , Cinética , Linfonodos/patologia , Linfócitos/imunologia , Camundongos , Infiltração de Neutrófilos , Oviductos/patologia , Baço/patologia , Vacinação , Vagina/imunologia , Vagina/patologia
6.
PLoS One ; 8(4): e61962, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613984

RESUMO

Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.


Assuntos
Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia/imunologia , Chlamydia/patogenicidade , Vacinação/métodos , Animais , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...