Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 458-465, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662818

RESUMO

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica
2.
Conserv Biol ; 36(5): e13915, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35384070

RESUMO

Understanding how biodiversity is changing over space and time is crucial for well-informed decisions that help retain Earth's biological heritage over the long term. Tracking changes in biodiversity through ecosystem accounting provides this important information in a systematic way and readily enables linking to other relevant environmental and economic data to provide an integrated perspective. We derived biodiversity accounts for the Murray-Darling Basin, Australia's largest catchment. We assessed biodiversity change from 2010 to 2015 for all vascular plants, all waterbirds, and 10 focal species. We applied a scalable habitat-based assessment approach that combined expected patterns in the distribution of biodiversity from spatial biodiversity models with a time series of spatially complete data on habitat condition derived from remote sensing. Changes in biodiversity from 2010 to 2015 varied across regions and biodiversity features. For the entire Murray-Darling Basin, the expected persistence of vascular plants increased slightly from 2010 to 2015 (from 86.8% to 87.1%), mean species richness of waterbirds decreased slightly (from 12.5 to 12.3 species), whereas for the focal species the estimated area of habitat increased for 8 species and decreased for 1 species. Regions in the north of the Murray-Darling Basin generally had decreases in biodiversity from 2010 to 2015, whereas in the south biodiversity was stable or increased. Our results demonstrate the benefits of habitat-based biodiversity assessments in providing fully scalable biodiversity accounts across different biodiversity features, consistent with the United Nations System of Environmental Economic Accounting - Ecosystem Accounting (SEEA EA) framework.


Evaluación de la Biodiversidad con base en el Hábitat para la Contabilización de Ecosistemas en la Cuenca Murray-Darling Resumen El conocimiento sobre cómo está cambiando la biodiversidad en el tiempo y en el espacio es crucial para las decisiones bien informadas que ayudan a retener la herencia biológica de la Tierra a largo plazo. El seguimiento de cambios en la biodiversidad mediante la contabilidad de los ecosistemas proporciona esta información importante de manera sistémica y permite fácilmente la conexión con otros datos ambientales y económicos relevantes para proporcionar una perspectiva integrada. Derivamos la contabilidad de la biodiversidad para la Cuenca Murray-Darling, la mayor cuenca de Australia. Analizamos los cambios en la biodiversidad entre 2010 y 2015 de todas las plantas vasculares, todas las aves acuáticas y diez especies focales. Aplicamos una estrategia de evaluación basada en el hábitat que combinó los patrones esperados en la distribución de la biodiversidad a partir de modelos espaciales de la biodiversidad con una serie temporal de datos espacialmente completos derivados de la teledetección de la condición del hábitat. Los cambios en la biodiversidad entre 2010 y 2015 variaron entre las regiones y las características de la biodiversidad. Para toda la Cuenca Murray-Darling, la persistencia esperada de las plantas vasculares incrementó ligeramente durante los años de estudio (de 86.8% a 87.1%), la riqueza promedio de especies de aves acuáticas disminuyó un poco (de 12.5 a 12.3 especies), mientras que el área estimada del hábitat de las especies focales incrementó para ocho especies y disminuyó para una. Las regiones al norte de la cuenca tuvieron disminuciones generalizadas de la biodiversidad entre 2010 y 2015, mientras al sur, la biodiversidad se mantuvo estable o incrementó. Nuestros resultados demuestran los beneficios que tienen las evaluaciones de la biodiversidad basadas en el hábitat para proporcionar una contabilidad de la biodiversidad completamente escalable entre las diferentes características de la biodiversidad, acorde con la estructura del Sistema de Contabilidad Económico-Ambiental - Contabilidad de los Ecosistemas (SEEA EA) de las Naciones Unidas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade
3.
Proc Natl Acad Sci U S A ; 117(18): 9906-9911, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317385

RESUMO

Degradation and loss of natural habitat is the major driver of the current global biodiversity crisis. Most habitat conservation efforts to date have targeted small areas of highly threatened habitat, but emerging debate suggests that retaining large intact natural systems may be just as important. We reconcile these perspectives by integrating fine-resolution global data on habitat condition and species assemblage turnover to identify Earth's high-value biodiversity habitat. These are areas in better condition than most other locations predicted to have once supported a similar assemblage of species and are found within both intact regions and human-dominated landscapes. However, only 18.6% of this high-value habitat is currently protected globally. Averting permanent biodiversity loss requires clear, spatially explicit targets for retaining these unprotected high-value habitats.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Planeta Terra , Animais , Ecossistema , Humanos
5.
Ecol Appl ; 22(6): 1852-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23092021

RESUMO

In response to climate change and other threatening processes there is renewed interest in the role of refugia and refuges. In bioregions that experience drought and fire, micro-refuges can play a vital role in ensuring the persistence of species. We develop and apply an approach to identifying potential micro-refuges based on a time series of remotely sensed vegetation greenness (fraction of photosynthetically active radiation intercepted by the sunlit canopy; fPAR). The primary data for this analysis were NASA MODIS 16-day L3 Global 250 m (MOD13Q1) satellite imagery. This method draws upon relevant ecological theory (source sink habitats, habitat templet) to calculate a micro-refuge index, which is analyzed for each of the major vegetation ecosystems in the case-study region (the Great Eastern Ranges of New South Wales, Australia). Potential ecosystem greenspots were identified, at a range of thresholds, based on an index derived from: the mean and coefficient of variance (COV) of fPAR over the 10-year time series; the minimum mean annual fPAR; and the COV of the 12 values of mean monthly fPAR. These greenspots were mapped and compared with (1) an index of vascular plant species composition, (2) environmental variables, and (3) protected areas. Potential micro-refuges were found within all vegetation ecosystem types. The total area of ecosystem greenspots within the upper 25% threshold was 48 406 ha; around 0.2% of the total area of native vegetation (23.9 x 10(6) ha) in the study region. The total area affected by fire was 3.4 x 10(6) ha. The results of the environmental diagnostic analysis suggest deterministic controls on the geographical distribution of potential micro-refuges that may continue to function under climate change. The approach is relevant to other regions of the world where the role of micro-refuges in the persistence of species is recognized, including across the world's arid zones and, in particular, for the Australian, southern African, and South American continents. Micro-refuge networks may play an important role in maintaining beta-diversity at the bio-region scale and contribute to the stability, resilience, and adaptive capacity of ecosystems in the face of ever-growing pressures from human-forced climate change, land use, and other threatening processes.


Assuntos
Mudança Climática , Secas , Ecossistema , Incêndios , Modelos Biológicos , Animais , Fenômenos Geológicos , Humanos , New South Wales , Plantas , Fatores de Tempo
6.
Glob Chang Biol ; 18(10): 3149-3159, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741821

RESUMO

Reliable projections of climate-change impacts on biodiversity are vital in formulating conservation and management strategies that best retain biodiversity into the future. While recent modelling has focussed largely on individual species, macroecology has the potential to add significant value to these efforts, by incorporating important community-level constraints and processes. Here we show how a new dynamic macroecological approach can project climate-change impacts collectively across all species in a diverse taxonomic group, overcoming shortfalls in our knowledge of biodiversity, while incorporating the key processes of dispersal and community assembly. Our approach applies a recently published technique (DynamicFOAM) to predict the present composition of every community, which form the initial conditions for a new metacommunity model (M-SET) that projects changes in composition over time, under specified climate and habitat scenarios. Applying this approach at fine resolution to plant biodiversity in Tasmania (2,051 species; 1,157,587 communities), we project high average turnover in community composition from 2010 to 2100 (mean Sorensen's dissimilarity = 0.71 (±7.0 × 10-5 )), with major reductions in species richness (32.9 (±0.02) species lost per community) and no plant species benefitting from climate change in the long term. We also demonstrate how our modelling approach can identify habitat likely to be of high value for retaining rare and poorly reserved species under climate change. Our analyses highlight the potential value of this dynamic macroecological approach, that incorporates key ecological processes in projecting climate change impacts for all species simultaneously and uses simple macroecological inputs that can be derived even for highly diverse and poorly studied taxa.

7.
Ecol Lett ; 14(10): 1043-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21812884

RESUMO

For many taxonomic groups, sparse information on the spatial distribution of biodiversity limits our capacity to answer a variety of theoretical and applied ecological questions. Modelling community-level attributes (α- and ß-diversity) over space can help overcome this shortfall in our knowledge, yet individually, predictions of α- or ß-diversity have their limitations. In this study, we present a novel approach to combining models of α- and ß-diversity, with sparse survey data, to predict the community composition for all sites in a region. We applied our new approach to predict land snail community composition across New Zealand. As we demonstrate, these predictions of metacommunity composition have diverse potential applications, including predicting γ-diversity for any set of sites, identifying target areas for conservation reserves, locating priority areas for future ecological surveys, generating realistic compositional data for metacommunity models and simultaneously predicting the distribution of all species in a taxon consistent with known community diversity patterns.


Assuntos
Biodiversidade , Ecologia/métodos , Modelos Biológicos , Animais , Caramujos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...