Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Res Princ Implic ; 9(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763994

RESUMO

A crucial bottleneck in medical artificial intelligence (AI) is high-quality labeled medical datasets. In this paper, we test a large variety of wisdom of the crowd algorithms to label medical images that were initially classified by individuals recruited through an app-based platform. Individuals classified skin lesions from the International Skin Lesion Challenge 2018 into 7 different categories. There was a large dispersion in the geographical location, experience, training, and performance of the recruited individuals. We tested several wisdom of the crowd algorithms of varying complexity from a simple unweighted average to more complex Bayesian models that account for individual patterns of errors. Using a switchboard analysis, we observe that the best-performing algorithms rely on selecting top performers, weighting decisions by training accuracy, and take into account the task environment. These algorithms far exceed expert performance. We conclude by discussing the implications of these approaches for the development of medical AI.


Assuntos
Inteligência Artificial , Humanos , Adulto , Crowdsourcing , Algoritmos , Teorema de Bayes
2.
Top Cogn Sci ; 14(2): 400-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865303

RESUMO

Improving the accuracy of medical image interpretation can improve the diagnosis of numerous diseases. We compared different approaches to aggregating repeated decisions about medical images to improve the accuracy of a single decision maker. We tested our algorithms on data from both novices (undergraduates) and experts (medical professionals). Participants viewed images of white blood cells and made decisions about whether the cells were cancerous or not. Each image was shown twice to the participants and their corresponding confidence judgments were collected. The maximum confidence slating (MCS) algorithm leverages metacognitive abilities to consider the more confident response in the pair of responses as the more accurate "final response" (Koriat, 2012), and it has previously been shown to improve accuracy on our task for both novices and experts (Hasan et al., 2021). We compared MCS to similarity-based aggregation (SBA) algorithms where the responses made by the same participant on similar images are pooled together to generate the "final response." We determined similarity by using two different neural networks where one of the networks had been trained on white blood cells and the other had not. We show that SBA improves performance for novices even when the neural network had no specific training on white blood cell images. Using an informative representation (i.e., network trained on white blood cells) allowed one to aggregate over more neighbors and further boosted the performance of novices. However, SBA failed to improve the performance for experts even with the informative representation. This difference in efficacy of the SBA suggests different decision mechanisms for novices and experts.


Assuntos
Metacognição , Humanos , Julgamento/fisiologia , Metacognição/fisiologia , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...