Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 13246-13269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244163

RESUMO

The upgrade of sustainable resource waste into a valuable and beneficial material is an urgent task. The current paper outlines the development of an economical, sustainable, and prolonged adsorbent derived from Sargassum siliquastrum biomass and its use for potent 2,4-dichlorophenoxyacetic acid (2,4-D) removal. A simple carbonization approach was applied to obtain the highly functionalized carbon structure, which was subsequently transformed into a novel magnetic nanoadsorbent. The magnetic nanoadsorbent was characterized using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET)-specific surface area, and vibrating sample magnetometer (VSM). The characterization results confirm the successful formation of a high specific surface area and a uniform distribution of Fe3O4/NiS NPs grafted activated carbon. The adsorption kinetics was more accurately described via the pseudo-second order model; nevertheless, the isothermal data showed that the Langmuir model was most suitable. The monolayer adsorption capacity for 2,4-D was 208.26 ± 15.75 mg/g at 328 K. The favourability and spontaneity of the adsorption process were demonstrated by thermodynamic studies. The adsorbent displayed exceptional selectivity for 2,4-D and high stability in multi-cycle use. Electrostatic attraction, π-π stacking, and hydrogen bonding were all believed to have an impact on the sorbent's robust 2,4-D adsorption. Analyses of real tap and Nile River water samples showed little effect of the sample matrix on 2,4-D adsorption. This study presents an innovative approach for developing highly efficient adsorbent from natural biomass and offers an affordable way to recycle algal waste into beneficial materials.


Assuntos
Herbicidas , Nanotubos , Sargassum , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Fenômenos Magnéticos , Ácido 2,4-Diclorofenoxiacético , Cinética , Poluentes Químicos da Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
2.
Water Sci Technol ; 85(2): 664-684, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35100146

RESUMO

Zinc oxide nanoparticles (ZnO NPs) were biosynthesized. According to gas chromatography/mass spectrometry analysis, chalcone, the main phytochemical, is probably complexed with Zn ions that are then oxidized to ZnO NPs by atmospheric O2 during heating. The ZnO NPs were characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area analysis. Sphere-like ZnO NPs were formed with 11 nm mean crystallite size, 5.2 m2 g-1 surface area, and 0.02 cm3 g-1 total pore volume. The synthesized ZnO showed excellent photocatalytic degradation (96.5±0.24% in 1 hour at 25 °C) of malachite green (MG) in aqueous solutions under ultraviolet light at optimum conditions; pH 10, MG initial concentration of 20 mg L-1, and ZnO dose of 1.5 g L-1. Also, ZnO showed very good reusability (92.9± 0.2% after five runs). The experimental data obeyed pseudo-first-order kinetics (R2 = 0.92). The photocatalysis process was dependent on the following species in the order: OH. > electron/positive hole pairs > O2.-. Moreover, photodegradation efficiency decreased in the presence of CO32-, HCO3-, and Cl-, but increased in the presence of NO3- and SO42- ions. Thus, the green synthesized ZnO NPs can be applied as an efficient photocatalyst for the removal of MG from aqueous media.


Assuntos
Nanopartículas , Óxido de Zinco , Catálise , Compostos Fitoquímicos , Corantes de Rosanilina , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...