Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leuk Res ; 140: 107497, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564986

RESUMO

Limited treatment options are available for patients with relapsed/refractory acute myeloid leukemia (R/R AML). We recently reported results from the phase 3 IDHENTIFY trial (NCT02577406) showing improved response rates and event-free survival with enasidenib monotherapy compared with conventional care regimens (CCR) in heavily pretreated, older patients with late-stage R/R AML bearing IDH2 mutations. Here we investigated the prognostic impact of mutational burden and different co-mutation patterns at study entry within the predominant IDH2 variant subclasses, IDH2-R140 and IDH2-R172. The prognostic relevance of these variants is well documented in newly diagnosed AML, but data are lacking in R/R AML. In this large R/R AML patient cohort, targeted next-generation sequencing at baseline (screening) revealed distinct co-mutation patterns and mutational burden between subgroups bearing different IDH2 variants: variant IDH2-R140 was associated with greater mutational burden and was enriched predominantly with poor-risk mutations, including FLT3, RUNX1, and NRAS, while variant IDH2-R172 was associated with lower mutational burden and was preferentially co-mutated with DNMT3A. In multivariable analyses, RAS and RTK pathway mutations were significantly associated with decreased overall survival, after adjusting for treatment arm, IDH2 variant, and mutational burden. Importantly, enasidenib-mediated survival benefit was more pronounced in patients with IDH2-R172 variants.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aminopiridinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Triazinas/uso terapêutico
2.
Blood ; 141(2): 156-167, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35714312

RESUMO

This open-label, randomized, phase 3 trial (NCT02577406) compared enasidenib, an oral IDH2 (isocitrate dehydrogenase 2) inhibitor, with conventional care regimens (CCRs) in patients aged ≥60 years with late-stage, mutant-IDH2 acute myeloid leukemia (AML) relapsed/refractory (R/R) to 2 or 3 prior AML-directed therapies. Patients were first preselected to a CCR (azacitidine, intermediate-dose cytarabine, low-dose cytarabine, or supportive care) and then randomized (1:1) to enasidenib 100 mg per day or CCR. The primary endpoint was overall survival (OS). Secondary endpoints included event-free survival (EFS), time to treatment failure (TTF), overall response rate (ORR), hematologic improvement (HI), and transfusion independence (TI). Overall, 319 patients were randomized to enasidenib (n = 158) or CCR (n = 161). The median age was 71 years, median (range) enasidenib exposure was 142 days (3 to 1270), and CCR was 36 days (1 to 1166). One enasidenib (0.6%) and 20 CCR (12%) patients received no randomized treatment, and 30% and 43%, respectively, received subsequent AML-directed therapies during follow-up. The median OS with enasidenib vs CCR was 6.5 vs 6.2 months (HR [hazard ratio], 0.86; P = .23); 1-year survival was 37.5% vs 26.1%. Enasidenib meaningfully improved EFS (median, 4.9 vs 2.6 months with CCR; HR, 0.68; P = .008), TTF (median, 4.9 vs 1.9 months; HR, 0.53; P < .001), ORR (40.5% vs 9.9%; P <.001), HI (42.4% vs 11.2%), and red blood cell (RBC)-TI (31.7% vs 9.3%). Enasidenib safety was consistent with prior reports. The primary study endpoint was not met, but OS was confounded by early dropout and subsequent AML-directed therapies. Enasidenib provided meaningful benefits in EFS, TTF, ORR, HI, and RBC-TI in this heavily pretreated older mutant-IDH2 R/R AML population.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Idoso , Humanos , Citarabina/uso terapêutico , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
3.
Cell Rep ; 37(6): 109977, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758308

RESUMO

Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.


Assuntos
Artrite Experimental/imunologia , DNA Mitocondrial/metabolismo , Imunidade Inata , Inflamação/imunologia , Interferon Tipo I/farmacologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/genética , Artrite Experimental/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Feminino , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitofagia
4.
Lancet Oncol ; 22(11): 1597-1608, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672961

RESUMO

BACKGROUND: Enasidenib is an oral inhibitor of mutant isocitrate dehydrogenase-2 (IDH2) proteins. We evaluated the safety and activity of enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia ineligible for intensive chemotherapy. METHODS: This open-label, phase 1b/2 trial was done at 43 clinical sites in 12 countries (the USA, Germany, Canada, the UK, France, Spain, Australia, Italy, the Netherlands, Portugal, Switzerland, and South Korea). Eligible patients were aged 18 years or older and had newly diagnosed, mutant-IDH2 acute myeloid leukaemia, and an Eastern Cooperative Oncology Group performance status of 0-2. In the phase 1b dose-finding portion, patients received oral enasidenib 100 mg/day or 200 mg/day in continuous 28-day cycles, plus subcutaneous azacitidine 75 mg/m2 per day for 7 days of each cycle. In phase 2, patients were randomly assigned (2:1) via an interactive web response system to enasidenib plus azacitidine or azacitidine-only, stratified by acute myeloid leukaemia subtype (de novo or secondary). The primary endpoint in the phase 2 portion was the overall response rate in the intention-to-treat population at a prespecified interim analysis (Aug 20, 2019) when all patients had at least 1 year of follow-up. Safety was assessed in all patients who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov, NCT02677922, and is ongoing. FINDINGS: Between June 3, 2016, and Aug 2, 2018, 322 patients were screened and 107 patients with mutant-IDH2 acute myeloid leukaemia were enrolled. At data cutoff for the interim analysis, 24 patients (including two from the phase 1 portion) were still receiving their assigned treatment. Six patients were enrolled in the phase 1b dose-finding portion of the trial and received enasidenib 100 mg (n=3) or 200 mg (n=3) in combination with azacitidine. No dose-limiting toxicities occurred and the enasidenib 100 mg dose was selected for phase 2. In phase 2, 101 patients were randomly assigned to enasidenib plus azacitidine (n=68) or azacitidine only (n=33). Median age was 75 years (IQR 71-78). 50 (74%; 95% CI 61-84) patients in the enasidenib plus azacitidine combination group and 12 (36%; 20-55) patients in the azacitidine monotherapy group achieved an overall response (odds ratio 4·9 [95% CI 2·0-11·9]; p=0·0003). Common treatment-related grade 3 or 4 adverse events with enasidenib plus azacitidine were thrombocytopenia (25 [37%] of 68 vs six [19%] of 32 in the azacitidine-only group), neutropenia (25 [37%] vs eight [25%]), anaemia (13 [19%] vs seven [22%]), and febrile neutropenia (11 [16%] vs five [16%]). Serious treatment-related adverse events were reported in 29 (43%) patients in the combination group and 14 (44%) patients in the azacitidine-only group; serious treatment-related adverse events occurring in more than 5% of patients in either group were febrile neutropenia (nine [13%] in the combination group vs five [16%] in the azacitidine-only group), differentiation syndrome (seven [10%] vs none), and pneumonia (three [4%] vs two [6%]). No treatment-related deaths were reported. INTERPRETATION: Combination enasidenib plus azacitidine was well tolerated and significantly improved overall response rates compared with azacitidine monotherapy, suggesting that this regimen can improve outcomes for patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia. FUNDING: Bristol Myers Squibb.


Assuntos
Aminopiridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/uso terapêutico , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Triazinas/uso terapêutico , Idoso , Antimetabólitos Antineoplásicos/uso terapêutico , Esquema de Medicação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Leucemia Mieloide Aguda/genética , Masculino , Mutação , Intervalo Livre de Progressão , Distribuição Aleatória , Resultado do Tratamento
5.
Proc Natl Acad Sci U S A ; 114(4): 746-751, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069950

RESUMO

Three-prime repair exonuclease 1 knockout (Trex1-/-) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1-/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1-/- background, and many metabolic defects persist in Trex1-/-Irf3-/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1-/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1-/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.


Assuntos
Imunidade Inata/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Metabolismo Energético/fisiologia , Gorduras/metabolismo , Feminino , Glicólise/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
6.
Pharmacol Res ; 111: 336-342, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353409

RESUMO

The serine/threonine protein kinase, TBK1, plays a crucial role as the hub for many innate immune signaling pathways that lead to the induction of type I interferon (IFN) and interferon-stimulated genes (ISGs). Due to its key function in maintaining homeostasis of the immune system, cell survival and proliferation, TBK1 activity is tightly regulated. Dysregulation of TBK1 activity is often associated with autoimmune diseases and cancer, implicating the potential therapeutic benefit for targeting TBK1. Tremendous effort from both academic institutions and private sectors during the past few years has led to the development of many potent and selective TBK1 inhibitors, many of which have shown great promise in disease models in vivo. This review summarizes recent advance on the pharmacological inhibition of TBK1 and its potential for treating autoimmune diseases and interferonopathies.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Interferons/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Doenças Autoimunes/enzimologia , Doenças Autoimunes/imunologia , Humanos , Fatores Imunológicos/efeitos adversos , Interferons/imunologia , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Leukoc Biol ; 100(3): 525-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26957214

RESUMO

Innate sensing of pathogens elicits protective immune responses through pattern recognition receptors, including Toll-like receptors. Although signaling by Toll-like receptors is regulated at multiple steps, including localization, trafficking, proteolytic cleavage, and phosphorylation, the significance of post-translational modifications and cellular stress response on Toll-like receptor stability and signaling is still largely unknown. In the present study, we investigated the role of cytoplasmic tyrosine motifs in Toll-like receptor-9 stability, proteolytic cleavage, and signaling. We demonstrated that tyrosine phosphorylation is essential for mouse Toll-like receptor-9 protein stability and signaling. Upon inhibition of tyrosine kinases with piceatannol, Toll-like receptor-9 tyrosine phosphorylation induced by CpG deoxyribonucleic acid was inhibited, which correlated with decreased signaling. Furthermore, inhibition of Src kinases with 1-tert-Butyl-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine also inhibited response to CpG deoxyribonucleic acid. Toll-like receptor-9 protein stability was also sensitive to autophagy, the cellular stress response pathway, and infection by a deoxyribonucleic acid virus. Whereas autophagy induced by rapamycin or low serum levels caused a preferential loss of the mature p80 proteolytic cleavage product, infection with herpes simplex virus-1 and induction of cell stress with tunicamycin caused preferential loss of full-length Toll-like receptor-9, which is localized to the endoplasmic reticulum. Our data reveal new information about the stability and signaling of Toll-like receptor-9 and suggest that immune evasion mechanisms may involve targeted loss of innate sensing receptors.


Assuntos
Estresse do Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Receptor Toll-Like 9/química , Receptor Toll-Like 9/fisiologia , Tirosina/metabolismo , Animais , Camundongos , Camundongos Knockout , Fosforilação , Estabilidade Proteica , Proteólise , Transdução de Sinais
9.
J Immunol ; 195(10): 4573-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432890

RESUMO

TANK-binding kinase 1 (TBK1) is a serine/threonine protein kinase that plays a crucial role in innate immunity. Enhanced TBK1 function is associated with autoimmune diseases and cancer, implicating the potential benefit of therapeutically targeting TBK1. In this article, we examined a recently identified TBK1 inhibitor Compound II on treating autoimmune diseases. We found that Compound II is a potent and specific inhibitor of TBK1-mediated IFN response. Compound II inhibited polyinosinic-polycytidylic acid-induced immune activation in vitro and in vivo. Compound II treatment also ameliorated autoimmune disease phenotypes of Trex1(-/-) mice, increased mouse survival, and dampened the IFN gene signature in TREX1 mutant patient lymphoblasts. In addition, we found that TBK1 gene expression is elevated in systemic lupus erythematosus patient cells, and systemic lupus erythematosus cells with high IFN signature responded well to Compound II treatment. Together, our findings provided critical experimental evidence for inhibiting TBK1 with Compound II as an effective treatment for TREX1-associated autoimmune diseases and potentially other interferonopathies.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Interferons/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Doenças Autoimunes/imunologia , Linhagem Celular , Exodesoxirribonucleases/genética , Humanos , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Poli I-C/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/metabolismo
10.
Immunity ; 43(3): 463-74, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320659

RESUMO

TREX1 is an endoplasmic reticulum (ER)-associated negative regulator of innate immunity. TREX1 mutations are associated with autoimmune and autoinflammatory diseases. Biallelic mutations abrogating DNase activity cause autoimmunity by allowing immunogenic self-DNA to accumulate, but it is unknown how dominant frameshift (fs) mutations that encode DNase-active but mislocalized proteins cause disease. We found that the TREX1 C terminus suppressed immune activation by interacting with the ER oligosaccharyltransferase (OST) complex and stabilizing its catalytic integrity. C-terminal truncation of TREX1 by fs mutations dysregulated the OST complex, leading to free glycan release from dolichol carriers, as well as immune activation and autoantibody production. A connection between OST dysregulation and immune disorders was demonstrated in Trex1(-/-) mice, TREX1-V235fs patient lymphoblasts, and TREX1-V235fs knock-in mice. Inhibiting OST with aclacinomycin corrects the glycan and immune defects associated with Trex1 deficiency or fs mutation. This function of the TREX1 C terminus suggests a potential therapeutic option for TREX1-fs mutant-associated diseases.


Assuntos
Citosol/enzimologia , Exodesoxirribonucleases/metabolismo , Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Aclarubicina/análogos & derivados , Aclarubicina/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Exodesoxirribonucleases/antagonistas & inibidores , Exodesoxirribonucleases/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Mutação da Fase de Leitura , Células HEK293 , Células HeLa , Hexosiltransferases/genética , Humanos , Imunidade Inata/genética , Immunoblotting , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Polissacarídeos/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Front Microbiol ; 5: 193, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817865

RESUMO

Innate immune recognition is crucial for host responses against viral infections, including infection by human immunodeficiency virus 1 (HIV-1). Human cells detect such invading pathogens with a collection of pattern recognition receptors that activate the production of antiviral proteins, such as the cytokine interferon-type I, to initiate antiviral responses immediately as well as the adaptive immune response for long-term protection. To establish infection in the host, many viruses have thus evolved strategies for subversion of these mechanisms of innate immunity. For example, acute infection by HIV-1 and other retroviruses have long been thought to be non-immunogenic, signifying suppression of host defenses by these pathogens. Studies in the past few years have begun to uncover a multifaceted scheme of how HIV-1 evades innate immune detection, especially of its DNA, by exploiting host proteins. This review will discuss the host mechanisms of HIV-1 DNA sensing and viral immune evasion, with a particular focus on TREX1, three prime repair exonuclease 1, a host 3' exonuclease (also known as DNase III).

12.
Nat Immunol ; 14(1): 61-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160154

RESUMO

The sensing of viral nucleic acids by the innate immune system triggers the production of type I interferons, which activates interferon-stimulated genes (ISGs) and directs a multifaceted antiviral response. ISGs can also be activated through interferon-independent pathways, although the precise mechanisms remain elusive. Here we found that the cytosolic exonuclease Trex1 regulated the activation of a subset of ISGs independently of interferon. Both Trex1(-/-) mouse cells and Trex1-mutant human cells had high expression of genes encoding antiviral molecules ('antiviral genes') and were refractory to viral infection. The interferon-independent activation of antiviral genes in Trex1(-/-) cells required the adaptor STING, the kinase TBK1 and the transcription factors IRF3 and IRF7. We also found that Trex1-deficient cells had an expanded lysosomal compartment, altered subcellular localization of the transcription factor TFEB and diminished activity of the regulator mTORC1. Together our data identify Trex1 as a regulator of lysosomal biogenesis and interferon-independent activation of antiviral genes and show that dysregulation of lysosomes can elicit innate immune responses.


Assuntos
Antígenos Virais/imunologia , Exodesoxirribonucleases/metabolismo , Lisossomos/fisiologia , Fosfoproteínas/metabolismo , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Exodesoxirribonucleases/genética , Células HeLa , Humanos , Imunidade Ativa/genética , Interferons/imunologia , Camundongos , Camundongos Knockout , Mutação/genética , Biogênese de Organelas , Fosfoproteínas/genética , RNA Interferente Pequeno/genética
13.
Blood ; 120(4): 768-77, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22700721

RESUMO

TLR3 is a key receptor for recognition of double-stranded RNA and initiation of immune responses against viral infections. However, hyperactive responses can have adverse effects, such as virus-induced asthma. Strategies to prevent TLR3-mediated pathology are therefore desired. We investigated the effect of single-stranded DNA oligonucleotides (ssDNA-ODNs) on TLR3 activation. Human monocyte-derived dendritic cells up-regulate maturation markers and secrete proinflammatory cytokines on treatment with the synthetic TLR3 ligand polyinosine-polycytidylic acid (poly I:C). These events were inhibited in cultures with ssDNA-ODNs. Poly I:C activation of nonhematopoietic cells was also inhibited by ssDNA-ODNs. The uptake of poly I:C into cells was reduced in the presence of ssDNA-ODNs, preventing TLR3 engagement from occurring. To confirm this inhibition in vivo, we administered ssDNA-ODNs and poly I:C, alone or in combination, via the intranasal route in cynomolgus macaques. Proinflammatory cytokines were detected in nasal secretions in the poly I:C group, while the levels were reduced in the groups receiving ssDNA-ODNs or both substances. Our results demonstrate that TLR3-triggered immune activation can be modulated by ssDNA-ODNs and provide evidence of dampening proinflammatory cytokine release in the airways of cynomolgus macaques. These findings may open novel perspectives for clinical strategies to prevent or treat inflammatory conditions exacerbated by TLR3 signaling.


Assuntos
Proliferação de Células , DNA de Cadeia Simples/farmacologia , Células Dendríticas/imunologia , Monócitos/imunologia , Oligonucleotídeos/farmacologia , Receptor 3 Toll-Like/metabolismo , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Macaca fascicularis , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Poli I-C/farmacologia , RNA de Cadeia Dupla/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Receptor 3 Toll-Like/antagonistas & inibidores
14.
J Immunol ; 188(2): 527-30, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22174451

RESUMO

Compartmentalization of nucleic acid sensing TLR9 has been implicated as a mechanism to prevent recognition of self nucleic acid structures. Furthermore, recognition of CpG DNA in different endosomal compartments leads to the production of the proinflammatory cytokine TNF-α, or type I IFN. We previously characterized a tyrosine-based motif at aa 888-891 in the cytoplasmic tail of TLR9 important for appropriate intracellular localization. In this article, we show that this motif is selectively required for the production of TNF, but not IFN. In response to CpG DNA stimulation, the proteolytically processed 80-kDa fragment is tyrosine phosphorylated. Although Y888 is not itself phosphorylated, the structure of this motif is necessary for both TLR9 phosphorylation and TNF-α production in response to CpG DNA. We conclude that bifurcation in TLR9 signaling is regulated by a critical tyrosine motif in the cytoplasmic tail.


Assuntos
Citocinas/biossíntese , Mediadores da Inflamação/fisiologia , Receptor Toll-Like 9/fisiologia , Tirosina/fisiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Animais , Células Cultivadas , Ilhas de CpG/imunologia , Citocinas/fisiologia , Citoplasma/genética , Citoplasma/imunologia , Citoplasma/patologia , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Mutação Puntual , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Tirosina/genética
15.
J Immunol ; 187(11): 5653-9, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22048772

RESUMO

Viral proteins and nucleic acids stimulate TLRs to elicit production of cytokines, chemokines, and IFNs. Because of their immunostimulatory activity, several TLR agonists are being developed as vaccine adjuvants and cancer immunotherapeutics. However, TLR signaling is modified by disease state, which could enhance or impair therapeutic efficacy. For example, in the skin of psoriasis patients, the human cationic antimicrobial peptide LL37 is highly expressed and binds to host DNA. Association with LL37 enhances DNA uptake into intracellular compartments, where it stimulates TLR9-dependent overproduction of IFNs. Polyinosinic-polycytidylic acid (poly(I:C)), an analog of viral dsRNA, is recognized by TLR3 and is currently in preclinical trials as an inducer of type I IFN. If LL37 similarly enhanced IFN production, use of poly(I:C) might be contraindicated in certain conditions where LL37 is elevated. In this study, we show that TLR3 signaling was not enhanced, but was dramatically inhibited, by LL37 or mouse cathelicidin-related antimicrobial peptide in macrophages, microglial cells, and dendritic cells. Inhibition correlated with formation of a strong complex between antimicrobial peptides and poly(I:C), which partially inhibited poly(I:C) binding to TLR3. Therefore, after injury or during existing acute or chronic inflammation, when LL37 levels are elevated, the therapeutic activity of poly(I:C) will be compromised. Our findings highlight the importance of using caution when therapeutically delivering nucleic acids as immunomodulators.


Assuntos
Catelicidinas/farmacologia , Fatores Imunológicos/farmacologia , Poli I-C/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Western Blotting , Catelicidinas/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Fatores Imunológicos/imunologia , Imunomodulação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
16.
Mol Ther ; 18(11): 2028-37, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20648001

RESUMO

Dendritic cells (DCs) are potent antigen-presenting cells that play a critical role in the activation of T cells. RNA interference (RNAi)-mediated silencing of negative immunoregulatory molecules expressed by DCs may provide a strategy to enhance the potency of DC-based vaccines and immunotherapy. Ablation of suppressor of cytokine signaling-1 (SOCS-1) in antigen-presenting cells has been shown to enhance cellular immune response in mice. Here, we used a previously reported DC-targeting approach to deliver small interfering RNA (siRNA) against SOCS-1 to human myeloid-derived DCs (MDDCs). SOCS1-silencing in MDDCs resulted in enhanced cytokine responses to lipopolysaccharide (LPS) and a strong mixed-lymphocyte reaction. Moreover, only DCs treated with SOCS-1 siRNA, and not controls, elicited strong primary in vitro responses to well-characterized HLA-A*0201-restricted Melan-A/MART-1 and human immunodeficiency virus (HIV) Gag epitopes in naive CD8(+) T cells from healthy donors. Finally, stimulation of CD8(+) T cells from HIV-seropositive subjects with SOCS1-silenced DCs resulted in an augmented polyfunctional cytotoxic T-lymphocyte (CTL) response, suggesting that SOCS-1 silencing can restore functionally compromised T cells in HIV infection. Collectively, these results demonstrate the feasibility of DC3-9dR-mediated manipulation of DC function to enhance DC immunogenicity for potential vaccine or immunotherapeutic applications.


Assuntos
Células Dendríticas/imunologia , HIV/imunologia , RNA Interferente Pequeno/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T/imunologia , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Antígenos HLA-A/imunologia , Antígeno HLA-A2 , Humanos , Lipopolissacarídeos/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
17.
Immunology ; 123(2): 239-49, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17725607

RESUMO

Bruton's tyrosine kinase (Btk), a member of the Tec family of tyrosine kinases, plays an important role in the differentiation and activation of B cells. Mutations affecting Btk cause immunodeficiency in both humans and mice. In this study we set out to investigate the potential role of Btk in Toll-like receptor 9 (TLR9) activation and the production of pro-inflammatory cytokines such as interleukin (IL)-6, tumour necrosis factor (TNF)-alpha and IL-12p40. Our data show that Btk-deficient B cells respond more efficiently to CpG-DNA stimulation, producing significantly higher levels of pro-inflammatory cytokines but lower levels of the inhibitory cytokine IL-10. The quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis presented in this work shows that mRNA production of one of the important new members of the IL-12 family, IL-27, was significantly increased in Btk-deficient B cells after CpG-DNA stimulation. In this study, we demonstrate significant differences in CpG responsiveness between transitional 1 (T1) and T2 B cells for survival and maturation. Furthermore, TLR9 expression, measured both as protein and as mRNA, was increased in Btk-defective cells, especially after TLR9 stimulation. Collectively, these data provide evidence in support of the theory that Btk regulates both TLR9 activation and expression in mouse splenic B cells.


Assuntos
Linfócitos B/imunologia , Citocinas/biossíntese , Proteínas Tirosina Quinases/imunologia , Receptor Toll-Like 9/imunologia , Tirosina Quinase da Agamaglobulinemia , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Mediadores da Inflamação/metabolismo , Interleucina-10/biossíntese , Interleucinas/biossíntese , Interleucinas/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Oligodesoxirribonucleotídeos/imunologia , Proteínas Tirosina Quinases/deficiência , Baço/imunologia , Regulação para Cima/imunologia
18.
Oligonucleotides ; 17(1): 80-94, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17461765

RESUMO

Self-assembling supramolecular complexes are of great interest for bottom-up research like nanotechnology. DNA is an inexpensive building block with sequence-specific self-assembling capabilities through Watson-Crick and/or Hoogsteen base pairing and could be used for applications in surface chemistry, material science, nanomechanics, nanoelectronics, nanorobotics, and of course in biology. The starting point is usually single-stranded DNA, which is rather easily accessible for base pairing and duplex formation. When long stretches of double-stranded DNA are desirable, serving either as genetic codes or electrical wires, bacterial expansion of plasmids is an inexpensive approach with scale-up properties. Here, we present a method for using double-stranded DNA of any sequence for generating simple structures, such as junctions and DNA lattices. It is known that supercoiled plasmids are strand-invaded by certain DNA analogs. Here we add to the complexity by using "Self-assembling UNiversal (SUN) anchors" formed by DNA analog oligonucleotides, synthesized with an extension, a "sticky-end" that can be used for further base pairing with single-stranded DNA. We show here how the same set of SUN anchors can be utilized for gene therapy, plasmid purification, junction for lattices, and plasmid dimerization through Watson-Crick base pairing. Using atomic force microscopy, it has been possible to characterize and quantify individual components of such supra-molecular complexes.


Assuntos
DNA de Cadeia Simples/química , DNA/química , Nanotecnologia/métodos , Oligonucleotídeos/química , Plasmídeos/química , Animais , Pareamento de Bases , Sequência de Bases , Dimerização , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Hibridização de Ácido Nucleico
19.
Biomol Eng ; 22(5-6): 185-92, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16144773

RESUMO

Low cellular uptake and poor nuclear transfer hamper the use of non-viral vectors in gene therapy. Addition of functional entities to plasmids using the Bioplex technology has the potential to improve the efficiency of transfer considerably. We have investigated the possibility of stabilizing sequence-specific binding of peptide nucleic acid (PNA) anchored functional peptides to plasmid DNA by hybridizing PNA and locked nucleic acid (LNA) oligomers as "openers" to partially overlapping sites on the opposite DNA strand. The PNA "opener" stabilized the binding of "linear" PNA anchors to mixed-base supercoiled DNA in saline. For higher stability under physiological conditions, bisPNA anchors were used. To reduce nonspecific interactions when hybridizing highly cationic constructs and to accommodate the need for increased amounts of bisPNA when the molecules are uncharged, or negatively charged, we used both PNA and LNA oligomers as "openers" to increase binding kinetics. To our knowledge, this is the first time that LNA has been used together with PNA to facilitate strand invasion. This procedure allows hybridization at reduced PNA-to-plasmid ratios, allowing greater than 80% hybridization even at ratios as low as 2:1. Using significantly lower amounts of PNA-peptides combined with shorter incubation times reduces unspecific binding and facilitates purification.


Assuntos
DNA Super-Helicoidal/química , Terapia Genética , Ácidos Nucleicos Peptídicos/química , Plasmídeos/química , Animais , Humanos , Cinética , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...