Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(4): 1231-1241, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36215340

RESUMO

OBJECTIVE: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to generate conduction currents in the head and disrupt brain functions. To rapidly evaluate the tDCS-induced current density in near real-time, this paper proposes a deep learning-based emulator, named DeeptDCS. METHODS: The emulator leverages Attention U-net taking the volume conductor models (VCMs) of head tissues as inputs and outputting the three-dimensional current density distribution across the entire head. The electrode configurations are also incorporated into VCMs without increasing the number of input channels; this enables the straightforward incorporation of the non-parametric features of electrodes (e.g., thickness, shape, size, and position) in the training and testing of the proposed emulator. RESULTS: Attention U-net outperforms standard U-net and its other three variants (Residual U-net, Attention Residual U-net, and Multi-scale Residual U-net) in terms of accuracy. The generalization ability of DeeptDCS to non-trained electrode configurations can be greatly enhanced through fine-tuning the model. The computational time required by one emulation via DeeptDCS is a fraction of a second. CONCLUSION: DeeptDCS is at least two orders of magnitudes faster than a physics-based open-source simulator, while providing satisfactorily accurate results. SIGNIFICANCE: The high computational efficiency permits the use of DeeptDCS in applications requiring its repetitive execution, such as uncertainty quantification and optimization studies of tDCS.


Assuntos
Aprendizado Profundo , Estimulação Transcraniana por Corrente Contínua , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/fisiologia , Cabeça , Eletrodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34337590

RESUMO

The outbreak of the SARS-CoV-2/Covid-19 virus in 2019-2020 has made the world look for fast and accurate detection methods of the disease. The most commonly used tools for detecting Covid patients are Chest-X-ray or Chest-CT-scans of the patient. However, sometimes it's hard for the physicians to diagnose the SARS-CoV-2 infection from the raw image. Moreover, sometimes, deep-learning-based techniques, using raw images, fail to detect the infection. Hence, this paper represents a hybrid method employing both traditional signal processing and deep learning technique for quick detection of SARS-CoV-2 patients based on the CT-scan and Chest-X-ray images of a patient. Unlike the other AI-based methods, here, a CT-scan/Chest-X-ray image is decomposed by two-dimensional Empirical Mode Decomposition (2DEMD), and it generates different orders of Intrinsic Mode Functions (IMFs). Next, The decomposed IMF signals are fed into a deep Convolutional Neural Network (CNN) for feature extraction and classification of Covid patients and Non-Covid patients. The proposed method is validated on three publicly available SARS-CoV-2 data sets using two deep CNN architectures. In all the databases, the modified CT-scan/Chest-X-ray image provides a better result than the raw image in terms of classification accuracy of two fundamental CNNs. This paper represents a new viewpoint of extracting preprocessed features from the raw image using 2DEMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...