Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365873

RESUMO

We report on fabricated titanium dioxide (TiO2) thin films along with a transimpedance amplifier (TIA) test setup as a photoconductivity detector (sensor) in the ultraviolet-C (UV-C) wavelength region, particularly at 260 nm. TiO2 thin films deposited on high-resistivity undoped silicon-substrate at thicknesses of 100, 500, and 1000 nm exhibited photoresponsivities of 81.6, 55.6, and 19.6 mA/W, respectively, at 30 V bias voltage. Despite improvements in the crystallinity of the thicker films, the decrease in photocurrent, photoconductivity, photoconductance, and photoresponsivity in thicker films is attributed to an increased number of defects. Varying the thickness of the film can, however, be leveraged to control the wavelength response of the detector. Future development of a chip-based portable UV-C detector using TiO2 thin films will open new opportunities for a wide range of applications.

2.
IEEE J Transl Eng Health Med ; 8: 4100113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31998567

RESUMO

Objective: investigation of the extra-low-frequency (ELF) stimulation effect on blood-cell proteins, that causes variation in its electrostatic-state. A hypothesis that this results in the conformational change in the blood-cell proteins which could enhance immune activity is explored. Since HIV-1 and host-cell engage through charge-charge interactions, an electrical-pulse may cause charge redistribution, hypothetically resulting in host-cell proteins to be isolated from viral access. Methods: Buffy coat samples were exposed to ELF square waveform pulses of 5Hz, 10Hz and 1MHz, for 2-hours, and were then examined using immunofluorescence technique. The expression of glycoprotein CD4, and co-receptor protein CCR5, were investigated. Also, the binding activity of the N-terminal domain of CCR5 and the distribution of the nuclear-pore-complex (NPC) transport factor, FGNup153 were investigated. Comparison with control samples were carried out. Results: Increased CD4 count, which could enhance the immune system. In addition, the inability of N-terminus-specific antibody 3A9 to bind to CCR5 N-terminal, could be due to the interactions with the ELF electric-field, which may also hypothetically inhibit HIV-1 attachment. Furthermore, the electrostatic interactions between the ELF pulse and the FGNup153 induces redistribution in its disorder sequence and possibly causes conformational change. This could possibly prevent large virus particle transport through the NPC. Conclusion: Novel concept of ELF stimulation of blood cellular proteins has been developed leading to transformation of immune activity. Clinical-Impact: The translational aspect is the use of ELF as an avenue of electro-medicine and the results are a possible foundation for the clinical application of ELF stimulation in immune response.

3.
IEEE Trans Nanobioscience ; 18(3): 428-436, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30946673

RESUMO

The lysis-lysogeny switch in E. coli due to infection from lambda phage has been extensively studied and explained by scientists of molecular biology. The bacterium either survives with the viral strand of deoxyribonucleic acid (DNA) or dies producing hundreds of viruses for propagation of infection. Many proteins transcribed after infection by λ phage take part in determining the fate of the bacterium, but two proteins that play a key role in this regard are the cI and cro dimers, which are transcribed off the viral DNA. This paper presents a novel modeling mechanism for the lysis-lysogeny switch, by transferring the interactions of the main proteins, the lambda right operator and promoter regions and the ribonucleic acid (RNA) polymerase, to a finite state machine (FSM), to determine cell fate. The FSM, and thus derived is implemented in field-programmable gate array (FPGA), and simulations have been run in random conditions. A Markov model has been created for the same mechanism. Steady state analysis has been conducted for the transition matrix of the Markov model, and the results have been generated to show the steady state probability of lysis with various model values. In this paper, it is hoped to lay down guidelines to convert biological processes into computing machines.


Assuntos
Bacteriófago lambda , Computadores Moleculares , Lisogenia/fisiologia , Modelos Biológicos , Modelos Estatísticos , Nanotecnologia/métodos , Bacteriófago lambda/química , Bacteriófago lambda/metabolismo , Escherichia coli/virologia , Cadeias de Markov , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...