Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 59(10)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37893423

RESUMO

Background and Objectives: Breast cancer (BC) is one of the major causes of cancer-related death in women globally. Proper identification of BC-causing hub genes (HubGs) for prognosis, diagnosis, and therapies at an earlier stage may reduce such death rates. However, most of the previous studies detected HubGs through non-robust statistical approaches that are sensitive to outlying observations. Therefore, the main objectives of this study were to explore BC-causing potential HubGs from robustness viewpoints, highlighting their early prognostic, diagnostic, and therapeutic performance. Materials and Methods: Integrated robust statistics and bioinformatics methods and databases were used to obtain the required results. Results: We robustly identified 46 common differentially expressed genes (cDEGs) between BC and control samples from three microarrays (GSE26910, GSE42568, and GSE65194) and one scRNA-seq (GSE235168) dataset. Then, we identified eight cDEGs (COL11A1, COL10A1, CD36, ACACB, CD24, PLK1, UBE2C, and PDK4) as the BC-causing HubGs by the protein-protein interaction (PPI) network analysis of cDEGs. The performance of BC and survival probability prediction models with the expressions of HubGs from two independent datasets (GSE45827 and GSE54002) and the TCGA (The Cancer Genome Atlas) database showed that our proposed HubGs might be considered as diagnostic and prognostic biomarkers, where two genes, COL11A1 and CD24, exhibit better performance. The expression analysis of HubGs by Box plots with the TCGA database in different stages of BC progression indicated their early diagnosis and prognosis ability. The HubGs set enrichment analysis with GO (Gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways disclosed some BC-causing biological processes, molecular functions, and pathways. Finally, we suggested the top-ranked six drug molecules (Suramin, Rifaximin, Telmisartan, Tukysa Tucatinib, Lynparza Olaparib, and TG.02) for the treatment of BC by molecular docking analysis with the proposed HubGs-mediated receptors. Molecular docking analysis results also showed that these drug molecules may inhibit cancer-related post-translational modification (PTM) sites (Succinylation, phosphorylation, and ubiquitination) of hub proteins. Conclusions: This study's findings might be valuable resources for diagnosis, prognosis, and therapies at an earlier stage of BC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Transcriptoma/genética , Simulação de Acoplamento Molecular , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Detecção Precoce de Câncer , Perfilação da Expressão Gênica/métodos , Prognóstico , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes
2.
Front Med (Lausanne) ; 10: 1304857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274444

RESUMO

Clofazimine (CFZ) and bedaquiline (BDQ) are currently used for the treatment of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains. In recent years, adding CFZ and BDQ to tuberculosis (TB) drug regimens against MDR Mtb strains has significantly improved treatment results, but these improvements are threatened by the emergence of MDR and extensively drug-resistant (XDR) Mtb strains. Recently, CFZ and BDQ have attracted much attention for their strong clinical efficacy, although very little is known about the mechanisms of action, drug susceptibility test (DST), resistance mechanisms, cross-resistance, and pharmacokinetics of these two drugs. In this current review, we provide recent updates on the mechanisms of action, DST, associated mutations with individual resistance and cross-resistance, clinical efficacy, and pharmacokinetics of CFZ and BDQ against Mtb strains. Presently, known mechanisms of resistance for CFZ and/or BDQ include mutations within the Rv0678, pepQ, Rv1979c, and atpE genes. The cross-resistance between CFZ and BDQ may reduce available MDR-/XDR-TB treatment options. The use of CFZ and BDQ for treatment in the setting of limited DST could allow further spread of drug resistance. The DST and resistance knowledge are urgently needed where CFZ and BDQ resistance do emerge. Therefore, an in-depth understanding of clinical efficacy, DST, cross-resistance, and pharmacokinetics for CFZ and BDQ against Mtb can provide new ideas for improving treatment outcomes, reducing mortality, preventing drug resistance, and TB transmission. Along with this, it will also help to develop rapid molecular diagnostic tools as well as novel therapeutic drugs for TB.

3.
PLoS One ; 17(4): e0266124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390032

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Biologia Computacional , Reposicionamento de Medicamentos , Síndrome Respiratória Aguda Grave , Antivirais/farmacologia , Humanos , MicroRNAs/genética , Simulação de Acoplamento Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2/genética , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Fatores de Transcrição/genética , Transcriptoma
4.
Sci Rep ; 12(1): 4279, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277538

RESUMO

The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein-protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/genética , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Estudos de Casos e Controles , Redes Reguladoras de Genes/genética , Marcadores Genéticos/genética , Humanos , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/genética
5.
Biosci Rep ; 35(3)2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26182377

RESUMO

Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.


Assuntos
Cisteína/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cisteína/genética , Deleção de Genes , Lisina/genética , Lisina/metabolismo , Proteínas de Membrana Transportadoras/genética , Peroxinas , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/metabolismo , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
6.
Front Physiol ; 4: 261, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24069002

RESUMO

Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.

7.
Protein J ; 27(2): 97-104, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18008152

RESUMO

A protein was isolated and purified from the ventral portion of the Potca fish, Tetraodon patoca. The method was accomplished by gel filtration of crude protein extract on Sephadex G-50 followed by Ion exchange chromatography on DEAE-cellulose and finally by affinity chromatography on ConA-Sepharose matrix. The molecular weight of the protein, determined by the gel filtration and SDS-PAGE was about 82,000 and 80,000 respectively, but 42,000 and 38,000 were indicated by SDS-PAGE in the presence of 2-mercaptoethanol. The protein agglutinated rat red blood cells and in a haptein-inhibition test, the protein was inhibited specifically by the D-mannose and mannose containing saccharides. The protein is glycoprotein with neutral sugar content of about 0.35%. The purified protein also showed strong cytotoxic effects, which was performed by brine shrimp lethality bioassay and histopathological examinations. The N-terminal amino acid sequences of both the subunits of the protein were also identified and used a blast search on N-terminal amino acid sequences of the subunits revealed that the protein showed significant homology with the homologous proteins in database.


Assuntos
Proteínas de Peixes/química , Lectinas de Ligação a Manose/química , Tetraodontiformes , Sequência de Aminoácidos , Animais , Proteínas de Peixes/isolamento & purificação , Proteínas de Peixes/toxicidade , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Testes de Inibição da Hemaglutinação , Lectinas de Ligação a Manose/isolamento & purificação , Lectinas de Ligação a Manose/toxicidade , Mitógenos/farmacologia , Dados de Sequência Molecular , Peso Molecular , Ratos , Alinhamento de Sequência
8.
Pak J Biol Sci ; 10(5): 773-7, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19069862

RESUMO

Among the marine toxins related to human intoxication, tetrodotoxin has been known as one of the most prejudicial. Two tetrodotoxins, namely PFT-1 and PFT-2 were isolated and purified from liver of puffer fish by thin layer chromatography. The structure of both the toxins was elucidated by means of IR, 1H-NMR and 13C-NMR and mass spectroscopy. Sub acute toxicity study showed that both the toxins had pronounced effects on total RBC, WBC, platelet and ESR. Further serum levels of SGPT, SGOT, SALP, bilirubin, creatinine and urea are also affected by the toxins. The histopathological examinations showed that all the tissues such as liver, lung, heart and kidney of rat were severely changed after treatment with the toxins. The toxicity of the purified compounds, PFT-1 and PFT-2 were also performed by brine shrimp lethality bioassay.


Assuntos
Tetraodontiformes , Tetrodotoxina/química , Tetrodotoxina/toxicidade , Animais , Isomerismo , Fígado/química , Espectroscopia de Ressonância Magnética , Ratos , Ratos Long-Evans , Espectrofotometria Infravermelho , Tetrodotoxina/isolamento & purificação , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...