Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049742

RESUMO

An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Variações do Número de Cópias de DNA , Prognóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Biomarcadores , Desenvolvimento de Medicamentos , Encéfalo/metabolismo
2.
J Trop Med ; 2022: 7111786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051190

RESUMO

Dengue is a Flavivirus infection transmitted through mosquitoes of the Aedes genus, which is known to occur in over 100 countries of the world. Dengue has no available drugs for treatment; CYD-TDV is the only vaccine thus far approved for use by a few countries in the world. In the absence of drugs and a widely approved vaccine, attention has been focused on plant-derived compounds to the discovery of a potential therapeutic for DENV. The present study aimed to determine, in silico, the binding energies of the steroidal saponins, melongosides, to NS2B-NS3 activator protease of DENV-2, which plays an essential role in the viral replication. The blind molecular docking studies carried out gave binding energies (ΔG = -kcal/mol) of melongosides B, F, G, H, N, O, and P as 7.7, 8.2, 7.6, 7.8, 8.3, 8.0, and 8.0, respectively. All the melongosides interacted with the NS3 protease part of NS2B-NS3. Melongosides B, F, and N showed interactions with His51, while melongoside G interacted with Asp75 of NS3, to be noted, these are important amino acid residues in the catalytic site of the NS3 protease. However, the 200 ns molecular dynamic simulation experiment indicates significant stability of the protein-ligand interactions with the RMSD values of 2.5 Å, thus suggesting a better docking position and no disruption of the protein-ligand structure. Taken together, melongosides need further attention for more scientific studies as a DENV inhibitory agent, which if proven, in vivo and in clinical trials, can be a useful therapeutic agent against at least DENV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...