Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37189488

RESUMO

The COVID-19 pandemic has presented a unique challenge for physicians worldwide, as they grapple with limited data and uncertainty in diagnosing and predicting disease outcomes. In such dire circumstances, the need for innovative methods that can aid in making informed decisions with limited data is more critical than ever before. To allow prediction with limited COVID-19 data as a case study, we present a complete framework for progression and prognosis prediction in chest X-rays (CXR) through reasoning in a COVID-specific deep feature space. The proposed approach relies on a pre-trained deep learning model that has been fine-tuned specifically for COVID-19 CXRs to identify infection-sensitive features from chest radiographs. Using a neuronal attention-based mechanism, the proposed method determines dominant neural activations that lead to a feature subspace where neurons are more sensitive to COVID-related abnormalities. This process allows the input CXRs to be projected into a high-dimensional feature space where age and clinical attributes like comorbidities are associated with each CXR. The proposed method can accurately retrieve relevant cases from electronic health records (EHRs) using visual similarity, age group, and comorbidity similarities. These cases are then analyzed to gather evidence for reasoning, including diagnosis and treatment. By using a two-stage reasoning process based on the Dempster-Shafer theory of evidence, the proposed method can accurately predict the severity, progression, and prognosis of a COVID-19 patient when sufficient evidence is available. Experimental results on two large datasets show that the proposed method achieves 88% precision, 79% recall, and 83.7% F-score on the test sets.

2.
Diagnostics (Basel) ; 12(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36359579

RESUMO

The outbreak of the novel coronavirus disease COVID-19 (SARS-CoV-2) has developed into a global epidemic. Due to the pathogenic virus's high transmission rate, accurate identification and early prediction are required for subsequent therapy. Moreover, the virus's polymorphic nature allows it to evolve and adapt to various environments, making prediction difficult. However, other diseases, such as dengue, MERS-CoV, Ebola, SARS-CoV-1, and influenza, necessitate the employment of a predictor based on their genomic information. To alleviate the situation, we propose a deep learning-based mechanism for the classification of various SARS-CoV-2 virus variants, including the most recent, Omicron. Our model uses a neural network with a temporal convolution neural network to accurately identify different variants of COVID-19. The proposed model first encodes the sequences in the numerical descriptor, and then the convolution operation is applied for discriminative feature extraction from the encoded sequences. The sequential relations between the features are collected using a temporal convolution network to classify COVID-19 variants accurately. We collected recent data from the NCBI, on which the proposed method outperforms various baselines with a high margin.

3.
Life (Basel) ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35629315

RESUMO

Currently, the spread of COVID-19 is running at a constant pace. The current situation is not so alarming, but every pandemic has a history of three waves. Two waves have been seen, and now expecting the third wave. Compartmental models are one of the methods that predict the severity of a pandemic. An enhanced SEIR model is expected to predict the new cases of COVID-19. The proposed model has an additional compartment of vaccination. This proposed model is the SEIRV model that predicts the severity of COVID-19 when the population is vaccinated. The proposed model is simulated with three conditions. The first condition is when social distancing is not incorporated, while the second condition is when social distancing is included. The third one condition is when social distancing is combined when the population is vaccinated. The result shows an epidemic growth rate of about 0.06 per day, and the number of infected people doubles every 10.7 days. Still, with imparting social distancing, the proposed model obtained the value of R0 is 1.3. Vaccination of infants and kids will be considered as future work.

4.
Healthcare (Basel) ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35627896

RESUMO

There have been considerable losses in terms of human and economic resources due to the current coronavirus pandemic. This work, which contributes to the prevention and control of COVID-19, proposes a novel modified epidemiological model that predicts the epidemic's evolution over time in India. A mathematical model was proposed to analyze the spread of COVID-19 in India during the lockdowns implemented by the government of India during the first and second waves. What makes this study unique, however, is that it develops a conceptual model with time-dependent characteristics, which is peculiar to India's diverse and homogeneous societies. The results demonstrate that governmental control policies and suitable public perception of risk in terms of social distancing and public health safety measures are required to control the spread of COVID-19 in India. The results also show that India's two strict consecutive lockdowns (21 days and 19 days, respectively) successfully helped delay the spread of the disease, buying time to pump up healthcare capacities and management skills during the first wave of COVID-19 in India. In addition, the second wave's severe lockdown put a lot of pressure on the sustainability of many Indian cities. Therefore, the data show that timely implementation of government control laws combined with a high risk perception among the Indian population will help to ensure sustainability. The proposed model is an effective strategy for constructing healthy cities and sustainable societies in India, which will help prevent such a crisis in the future.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35010740

RESUMO

The highly rapid spread of the current pandemic has quickly overwhelmed hospitals all over the world and motivated extensive research to address a wide range of emerging problems. The unforeseen influx of COVID-19 patients to hospitals has made it inevitable to deploy a rapid and accurate triage system, monitor progression, and predict patients at higher risk of deterioration in order to make informed decisions regarding hospital resource management. Disease detection in radiographic scans, severity estimation, and progression and prognosis prediction have been extensively studied with the help of end-to-end methods based on deep learning. The majority of recent works have utilized a single scan to determine severity or predict progression of the disease. In this paper, we present a method based on deep sequence learning to predict improvement or deterioration in successive chest X-ray scans and build a mathematical model to determine individual patient disease progression profile using successive scans. A deep convolutional neural network pretrained on a diverse lung disease dataset was used as a feature extractor to generate the sequences. We devised three strategies for sequence modeling in order to obtain both fine-grained and coarse-grained features and construct sequences of different lengths. We also devised a strategy to quantify positive or negative change in successive scans, which was then combined with age-related risk factors to construct disease progression profile for COVID-19 patients. The age-related risk factors allowed us to model rapid deterioration and slower recovery in older patients. Experiments conducted on two large datasets showed that the proposed method could accurately predict disease progression. With the best feature extractor, the proposed method was able to achieve AUC of 0.98 with the features obtained from radiographs. Furthermore, the proposed patient profiling method accurately estimated the health profile of patients.


Assuntos
COVID-19 , Aprendizado Profundo , Idoso , Progressão da Doença , Humanos , Redes Neurais de Computação , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...