Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
RSC Adv ; 14(22): 15755-15765, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38752162

RESUMO

Acetaldehyde, a prevalent carbonyl compound in fermented foods, poses challenges in various applications due to its reactivity. This study addresses the need for efficient acetaldehyde detection methods across biotechnological, environmental, pharmaceutical, and food sectors. Herein, we present a novel colorimetric/UV spectrophotometric approach utilizing gold nanoparticles (AuNPs), particularly gold nano-flowers (AuNFs), for sensitive acetaldehyde identification. The method exhibits a notable sensitivity, detecting acetaldehyde at concentrations as low as 0.1 µM. The mechanism involves the interaction of acetaldehyde molecules with AuNFs, leading to a significant change in the absorbance spectrum, which serves as the basis for detection. Moreover, its applicability extends to human biofluids, notably urine samples. Integration with a cost-effective one-drop microfluidic colorimetric device (OD-µPCD) enables the development of an affordable test strip (CATS). This semi-analytical device, employing a multichannel OD-µPCD, facilitates real-time analysis of acetaldehyde in human samples. Our findings demonstrate the pioneering utilization of AuNPs for selective and sensitive acetaldehyde detection, promising advancements in environmental and occupational safety standards, and laying a foundation for enhanced detection and monitoring of related volatile organic compounds (VOCs).

2.
RSC Adv ; 14(19): 13384-13412, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38660530

RESUMO

The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.

3.
RSC Adv ; 14(13): 8810-8818, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495975

RESUMO

Parkinson's disease (PD), the second most frequent neurodegenerative illness, is a neurological ailment that produces unintentional or uncontrolled body movements, which should be diagnosed in its early stages to hinder the progression. Monitoring the concentration of α-synuclein (α-Syn) in body fluids can be one of the most efficient ways for PD early detection. In this work, a paper-based electrochemical immunosensor was designed for α-Syn bio-assay in human plasma samples based on encapsulation of the biotinylated antibody on novel dendritic fibrous nanosilica ((KCC-1-nPr-CS2)-Ab). For this purpose, a three-electrode system was prepared using stabilization of silver nano-ink on photographic paper. Then, the (KCC-1-NH-CS2)-Ab was immobilized on its surface and used to detect the target antigen (α-Syn). After characterization of the prepared substrate by FE-SEM and EDS, the redox behavior of the biosensor was evaluated using chronoamperometry techniques. Under optimal experimental conditions and using a label-free strategy, the engineered immunosensor showed a linear relationship between peak current and antigen concentration in the linear range from 0.002 to 128 ng mL-1 with the lower limit of quantification of 0.002 ng mL-1. Moreover, this work involves unprecedented use of conductive nano-inks for the manufacture of α-Syn immunosensor, which is aided by the use of a mesoporous silicate dendrimer in encapsulating the α-Syn antibody, thus offering a robust and simple point-of-care device for early PD diagnosis. The ability of the proposed platform to detect small amounts of α-Syn offers a promising approach to developing low-cost, sensitive, and transportable biosensors for Parkinson's disease screening in its early stages.

4.
RSC Adv ; 14(13): 8602-8614, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495985

RESUMO

Biogenic amines (BAs) are a group of organic compounds that are produced through the decarboxylation of amino acids by microorganisms. These compounds are commonly found in a variety of foods and are known to cause adverse health effects if consumed in high concentrations. Therefore, the development of sensitive and rapid detection methods for detection and determination of BAs is essential for ensuring food safety. In this study, a novel colorimetric affordable test strip (CATS) was developed for the colorimetric and naked-eye detection of two BAs of ethylenediamine (EDA) and histamine (HIS) in meat samples. Also, triangular silver nanoparticles (AgNPrs) were used as a diagnostic optical probe, and CATS used as a simple, environmentally friendly, inexpensive diagnostic substrate for on-site recognition of meat spoil. The AgNPrs-based optosensor demonstrated high sensitivity and selectivity towards EDA and HIS, allowing for the detection of low concentrations of the BAs in real food samples such as raw chicken and beef. The system presented a UV-vis technique for HIS and EDA analysis in the linear range of 0.1 µM to 0.01 mM, with an LLOQ of 0.1 µM, and 0.05 to 1 µM, with an LLOQ of 0.05 µM, respectively. Additionally, the performance of the designed CATS in the analysis of produced gases was evaluated, highlighting the potential of this simple and cost-effective strategy for the development of BAs diagnostic kits. This approach provides a simple and cost-effective method for detecting BAs in food, which could be beneficial for ensuring food safety and preventing the harmful effects associated with their consumption.

5.
RSC Adv ; 14(4): 2610-2620, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38226144

RESUMO

Dapoxetine (DPX) belongs to the selective serotonin reuptake inhibitor (SSRI) class and functions by blocking the serotonin transporter and increasing serotonin activity, thereby delaying ejaculation. Therefore, monitoring of the concentration of DPX in human biofluids is important for clinicians. In this study, application of silver nanoparticles with the morphology of prisms (AgNPrs) for the sensitive measurement of DPX using colorimetric chemosensing and the spectrophotometric method was investigated. Also, DPX was determined in real samples using the spectrophotometry method. Based on the obtained results, all of the detection process in colorimetric assay is related to morphological reform of AgNPrs after it's specific electrostatic and covalent interaction with DPX as analyte. The UV-vis results indicate that the proposed AgNPrs-based chemosensing system has a wide range of linearity (0.01 µM to 1 mM) with a low limit of quantification of 0.01 µM in human urine samples, which is suitable for clinical analysis of this drug in human urine samples. It is important to point out that, this chemosensing strategy showed inappropriate analytical results for the detection of DPX in human urine samples which is a novelty of this platform. Finally, the optimized microfluidic paper-based analytical device (µPAD) was integrated with the colorimetric analysis of DPX to provide a time/color system for estimating analyte concentration by a portable substrate toward in situ and on-site biomedical analysis. Interestingly, the analytical validation tests showed appropriate results with great stability, which may facilitate commercialization of the engineered substrate. For the first time, in order to provide a simple and portable colorimetric/spectrophotometric recognition system to sensitive determination of DPX, an optimized pump-less microfluidic paper-based colorimetric device (µPCD) was introduced and validated for the real-time biomedical analysis of this analyte. According to the obtained results, this alternative approach is suitable for therapeutic drug monitoring (TDM) and biomedical analysis by miniaturized and cost-beneficial devices.

6.
RSC Adv ; 13(44): 30925-30936, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37876653

RESUMO

Lymphatic vessel endothelium expresses various lymphatic marker molecules. LYVE-1, the lymphatic vessel endothelial hyaluronan (HA) receptor, a 322-residue protein belonging to the integral membrane glycoproteins which is found on lymph vessel wall and is completely absent from blood vessels. LYVE-1 is very effective in the passage of lymphocytes and tumor cells into the lymphatics. As regards cancer metastasis, in vitro studies indicate LYVE-1 to be involved in tumor cell adhesion. Researches show that, in neoplastic tissue, LYVE-1 is limited to the lymphovascular and could well be proper for studies of tumor lymphangiogenesis. So, the monitoring of LYVE-1 level in human biofluids has provided a valuable approach for research into tumor lymphangiogenesis. For the first time, an innovative paper-based electrochemical immune-platform was developed for recognition of LYVE-1. For this purpose, graphene quantum dots decorated silver nanoparticles nano-ink was synthesized and designed directly by writing pen-on paper technology on the surface of photographic paper. This nano-ink has a great surface area for biomarker immobilization. The prepared paper-based biosensor was so small and cheap and also has high stability and sensitivity. For the first time, biotinylated antibody of biomarker (LYVE-1) was immobilized on the surface of working electrode and utilized for the monitoring of specific antigen by simple immune-assay strategy. The designed biosensor showed two separated linear ranges in the range of 20-320 pg ml-1 and 0.625-10 pg ml-1, with the acceptable limit of detection (LOD) of 0.312 pg ml-1. Additionally, engineered immunosensor revealed excellent selectivity that promises its use in complex biological samples and assistance for biomarker-related disease screening in clinical studies.

7.
RSC Adv ; 13(43): 30499-30510, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37854491

RESUMO

Malondialdehyde (MDA) is a critical product of polyunsaturated adipose acid peroxidation and represents a common biomarker of oxidative stress. The effect of different MDA concentrations on human biofluids reflects pathological changes, which has been seen in diverse types of sickness, such as leukemia, diabetes, cancer, cardiovascular disease, and age-related macular degeneration and liver disease. In this study, different types of silver nanoparticles, including silver nanoprism (AgNPrs), silver nanowires (AgNWs), and silver nanospheres (AgNSs), were synthesized and used for the chemosensing of MDA by colorimetric and spectrophotometric methods. Colorimetric tests were performed to identify malondialdehyde in the solution as well as the one-droplet-based microfluidic paper substrate as a miniaturization device for the monitoring of analytes in human real samples. The analytical quantification of the MDA was done using the UV-Vis method. Also, the utilization of the designed chemosensor for the analysis of MDA in real sample was evaluated in human urine samples. Using the spectrophotometric method, MDA was deformed in the linear range of 0.01192 to 1.192 mM with a low limit of quantification of 0.12 µM. Essential significant features of this study include the first application of AgNPrs with high stability and great optical properties without any reagent as an optical sensing probe of MDA and optimized OD-µPCD toward on-site and on-demand MDA screening in real samples diagnosis and the innovative time/color semi-analytical recognition strategy. Moreover, the prepared OD-µPCD decorated by AgNPrs could be a prized candidate for commercialization due to the benefits of the low-cost materials used, like paper and paraffin, and portability. This innovative process led to uniform hydrophilic micro-channels on the surface of cellulose, without the use of a UV lamp, clean room, and organic solvents. This report could be a pioneering work, inspiring simple and effective on-site semi-analytical recognition devices for harmful substances or illegal drugs, which simply consist of a piece of lightweight paper and one drop of the required reagent.

8.
Anal Methods ; 15(35): 4506-4517, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37615053

RESUMO

Illegal use of ractopamine (RAC) in the food industry has dire consequences for health which should be curbed by inexpensive on-site checks. In this study, four advanced nanostructures of AuNPs were examined for this purpose. For the first time, a novel cost-effective colorimetric opto-sensor based on gold nanoparticles in aqueous solution was developed and successfully utilized for the recognition of RAC in real samples. The colorimetric chemosensor based on AuNPs-CysA exhibited a linear range of 0.1 µM to 0.01 M with a limit of detection (LOD) of 0.001 µM. Also, using AuNPs-DDT as a photonic probe two ranges of linearity of 0.01 to 50 µM and 0.005 to 0.01 M were obtained (LOD = 1 nM). The outstanding features of the utilized nanostructures are the simple preparation, the suitable stability of AuNPs-CysA and the excellent selectivity of AuNPs-DDT toward RAC recognition. Finally, the engineered colorimetric systems were combined with a simple and inexpensive optimized microfluidic glass fiber-based device. This work paves the way for devising inexpensive and efficient on-site recognition devices for food safety checks.


Assuntos
Ouro , Nanopartículas Metálicas , DDT , Microfluídica , Preparações Farmacêuticas
10.
Anal Methods ; 15(29): 3549-3561, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37449384

RESUMO

Quetiapine fumarate (QF) is used to treat a number of mental/emotional diseases, including schizophrenia, bipolar disorder, and abrupt bouts of mania or depression linked to bipolar disorder. This antipsychotic medicine can be deadly if an overdose is given to a person. Therefore, the sensitive identification of QF in bodily fluids is very important. In this study, an innovative low-cost colorimetric chemosensor based on silver nanoprism transfiguration in a phosphate-buffered saline (PBS)/Cl- matrix was developed and successfully tested for the recognition of QF in human-exhaled breath condensate. Using this non-invasive colorimetric chemosensor, a broad linearity range of 0.001-1000 µM and a low limit of quantification of 0.001 µM for QF were attained. Notably, the proposed optical chemosensor is capable of detecting QF from a minimum amount of sample [500 µM in PBS and 0.001 µM in exhaled breath condensate] in the first few seconds of reaction by the naked eye. So, a rapid colorimetric assay for the on-site analysis of QF was developed and validated. Moreover, for the first time, a semi-analytical method was introduced that can provide a rough estimation of the QF concentration. This colorimetric system was, for the first time, integrated in an optimized microfluidic paper-based colorimetric device (µPCD), promising the development of an engineered colorimetric opto-sensor toward real-time and therapeutic drug monitoring (TDM) assay of drugs in real-world samples.


Assuntos
Antipsicóticos , Colorimetria , Humanos , Fumarato de Quetiapina , Colorimetria/métodos , Smartphone , Microfluídica , Antipsicóticos/uso terapêutico
11.
RSC Adv ; 13(19): 12760-12780, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37153517

RESUMO

Foodborne diseases have arisen due to the globalization of industry and the increase in urban population, which has led to increased demand for food and has ultimately endangered the quality of food. Foodborne diseases have caused some of the most common public health problems and led to significant social and economic issues worldwide. Food quality and safety are affected by microbial contaminants, growth-promoting feed additives (ß-agonists and antibiotics), food allergens, and toxins in different stages from harvesting to storage and marketing of products. Electrochemical biosensors, due to their reduced size and portability, low cost, and low consumption of reagents and samples, can quickly provide valuable quantitative and qualitative information about food contamination. In this regard, using nanomaterials can increase the sensitivity of the assessment. Magnetic nanoparticle (MNP)-based biosensors, especially, are receiving significant attention due to their low-cost production, physicochemical stability, biocompatibility, and eco-friendly catalytic characteristics, along with magnetic, biological, chemical and electronic sensing features. Here, we provide a review on the application of iron-based magnetic nanoparticles in the electrochemical sensing of food contamination. The types of nanomaterials used in order to improve the methods and increase the sensitivity of the methods have been discussed. Then, we stated the advantages and limitations of each method and tried to state the research gaps for each platform/method. Finally, the role of microfluidic and smartphone-based methods in the rapid detection of food contamination is stated. Then, various techniques like label-free and labelled regimes for the sensitive monitoring of food contamination were surveyed. Next, the critical role of antibody, aptamer, peptide, enzyme, DNA, cells and so on for the construction of specific bioreceptors for individual and simultaneous recognition by electrochemical methods for food contamination were discussed. Finally, integration of novel technologies such as microfluidic and smartphones for the identification of food contaminations were investigated. It is important to point out that, in the last part of each sub-section, attained results of different reports for each strategy were compared and advantages/limitations were mentioned.

12.
Bioanalysis ; 15(10): 567-580, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37170535

RESUMO

Aim: This study aimed to establish a label-free electrochemical biosensor for telomerase detection in human biofluid. Method: Synthesized green nanocomposite (poly[chitosan] decorated by gold nanoparticles) was used for the efficient immobilization of biotinylated antibody of telomerase and immunocomplex of antigen-antibody. Poly(chitosan) was decorated by gold nanoparticles on the surface of a glassy carbon electrode using an electrochemical coating technique. Results: The constructed immunosensor exhibited wide dynamic range (0.078-160 IU/ml-1) with a low limit of quantification of 0.078 IU/ml-1, which present a unique manner for telomerase assays in early prognosis for cancers. Conclusion: This study encourages scientists and scholars to design and develop new biosensor platforms for point-of-care diagnostics for telomerase management, an interesting reference for future research.


Assuntos
Técnicas Biossensoriais , Quitosana , Nanopartículas Metálicas , Telomerase , Humanos , Ouro , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Anticorpos , Eletrodos , Limite de Detecção
13.
Food Chem ; 423: 136307, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178603

RESUMO

Synthetic dyes must be monitored and regulated. We aimed to develop a novel photonic chemosensor for rapidly monitoring synthetic dyes based on colorimetric (chemical interactions with optical probes using microfluidic paper-based analytical devices) and UV-Vis spectrophotometric methods. Various types of gold and silver nanoparticles were surveyed to identify the targets. In the presence of silver nanoprisms, the naked eye could visualize the unique and distinctive color changes of Tartrazine (Tar) to green and Sunset Yellow (Sun) to brown; UV-Vis spectrophotometry validated the results. The developed chemosensor showed linear ranges of 0.07-0.3 mM and 0.05-0.2 mM for Tar and Sun, respectively. Sources of interference had minimal effects, confirming the appropriate selectivity of the developed chemosensor. Our novel chemosensor demonstrated excellent analytical performance for measuring Tar and Sun in several types of orange juice as real samples, confirming its incredible potential for use in the food industry.


Assuntos
Citrus sinensis , Nanopartículas Metálicas , Corantes , Colorimetria/métodos , Prata , Espectrofotometria/métodos , Tartrazina
14.
RSC Adv ; 13(9): 6225-6238, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825283

RESUMO

Acetaldehyde acts as an important mediator in the metabolism of plants and animals; however, its abnormal level can cause problems in biological processes. Although acetaldehyde is found naturally in many organisms, exposure to high concentrations can have effects on the eyes, respiratory system, etc. Due to the importance of detecting acetaldehyde in environmental samples and biofluids, determination of its concentration is highly demanded. There are some reports showing exposure to high concentrations of acetaldehyde for a long time can increase the risk of cancer by reacting with DNA. In this work, we presented a novel colorimetric method for rapid and sensitive detection of acetaldehyde with high reproducibility using different AgNPs with various morphologies. The redox reaction between AgNPs, 3,3',5,5'-tetramethylbenzidine (TMB) solution, and analytes endows a color change in 15 minutes that is detectable by the naked eye. UV spectrophotometry was further used for quantitative analysis. An iron mold with a hexagonal pattern and liquid paraffin were also used to prepare the paper-based microfluidic substrate, as a low cost, accessible, and rapid detection tool. Different types of AgNPs showed different lower limits of quantification (LLOQ). The AgNPs-Cit and AgNPrs could identify acetaldehyde with linear range of 10-7 to 10 M and an LLOQ of 10-7 M. The AgNWs showed the best color change activity with a linear range 10-5 to 10 M and the lowest diagnostic limit is 10-5 M. Finally, analysis of human biofluids as real samples were successfully performed using this system.

15.
RSC Adv ; 13(6): 3575-3585, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756594

RESUMO

Hydrazine (Hyd), a poisonous substance, is frequently employed in agriculture and industry as a scavenger to remove residues of oxygen from boiler feed water, electrical power plants, etc. Even at trace amounts, these chemicals are hazardous to humans. To limit the risks of exposure, there is a critical need for sensors for the monitoring of Hyd concentration to guarantee they are below harmful levels. In comparison to other approaches, the colorimetric method has garnered a great deal of interest due to its high sensitivity, speed, convenience, and simple optical color change detection. This study's primary purpose is to develop a portable tool for the colorimetric and spectrophotometric detection of Hyd using silver nanoparticles (silver nanoprism (AgNPr), silver nanowires (AgNW), and silver citrate (AgCit)). In addition, UV-visible spectroscopy was utilized for the quantitation evaluation of Hyd in real samples. The proposed approach demonstrated a linear range of 0.08 M to 6 M for Hyd by AgNW and 0.02 to 5 M by AgNPr as optical probes, whereas AgCit exhibited no color change (negative response). Using AgNPr and AgNW, the low limit of detection of Hyd was 200 µM and 800 µM, respectively. In addition, a novel method was employed for the first time to explore the effect of time on the determination of the candidate analyte. Consequently, the proposed method can be utilized to detect Hyd in real samples. Therefore, our method shows both qualitative and quantitative measurement of Hyd with high sensitivity, low cost, and fast analysis time and promisingly it can be industrialized for quick detection of Hyd in aquatic real samples.

16.
J Adv Med Educ Prof ; 11(1): 61-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685145

RESUMO

Introduction: Medical errors are a serious problem in providing medical care and ensuring the health of society, and discovering the causes of errors to minimize the possibility of their occurrence is one of the main challenges in the field of treating patients. This study aimed to determine the relationship between professional identity, performance and attitude to self-reported medical errors among medical interns of Ardabil University of Medical Sciences. Methods: This cross-sectional analytical study was conducted on 187 medical interns with census method in five Ardabil educational hospitals in the second semester of 2020-2021. Data collection tool was a questionnaire consisting of 3 parts (demographic, self-reported attitude towards medical errors and professional identity). The validity of the questionnaire was evaluated using Content validity index (CVI) and Content validity ratio (CVR). The reliability of the attitude section was 0.78 and 0.86 for professional identity section. Data analyses were performed using the IBM SPSS Statistics, version 21 by descriptive statistics, such as mean and standard deviation and independent T-test, chi-square and one-way ANOVA. P-values <0.05 were considered statistically significant. Results: The mean scores of students' attitudes towards self-report and professional identity were 55.6±8.8 and 60.4±9.8. Less than 50% of the students declared the possibility of reporting their medical errors. There were no significant differences in the mean scores of self-reported attitude, medical error and professional identity according to grade point average, type of faculty and students' gender (P>0.05). Conclusion: The attitude and performance of students regarding the self-disclosure of medical errors was not satisfactory, and it seems that the analysis of the educational programs in the education of medical errors and the legal and ethical aspects of errors needs serious attention.

17.
J Mol Recognit ; 36(4): e2952, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34985150

RESUMO

This research work explains the development of an electrochemical immunosensor for the selective recognition of SNCA in human biofluids. An innovative protocol was proposed for the green synthesis of gold nanoparticle-supported dimethylglyoxime (AuNPs@DMGO) using one-step electrogeneration method. Also, the application of AuNPs@DMGO for the sensitive quantification of α-Synuclein (SNCA) protein and its biomedical analysis. So, an innovative sandwich immunosensor was designed for the sensitive identification of SNCA antigen in an aqueous solution. The gold nanoparticles (AuNPs) were decorated on the surface of the glassy carbon electrode by chronoamperometry technique to provide appropriate immobilization surface with a large number of active sites for immobilization of specific biotinylated antibody (Ab1) and against SNCA protein. Then, the sandwich-type immuno-platform was completed by the attachment of secondary antibody (HRP conjugated Ab [Ab2]) to the primary complexes on the surface of the electrode. For the first time, α-Synuclein protein was measured with an acceptable linear range of 4-64 ng/mL and a lower limit of quantification of 4 ng/mL. Benefiting from the simplicity and high sensitivity, the proposed method shows a potential of employment in clinical applications and high-throughput screening of Parkinson's disease using POC.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Doença de Parkinson , Humanos , Ouro/química , Técnicas Biossensoriais/métodos , alfa-Sinucleína , Nanopartículas Metálicas/química , Doença de Parkinson/diagnóstico , Limite de Detecção , Imunoensaio/métodos , Anticorpos/química , Técnicas Eletroquímicas/métodos
18.
Med Res Rev ; 43(3): 464-569, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464910

RESUMO

Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanoestruturas , Feminino , Humanos , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Nanotecnologia/métodos , Biomarcadores , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
19.
Food Chem ; 402: 134501, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303391

RESUMO

An electrochemical sensor was designed to identify food colorants in juices. A green polymeric nanocomposite (beta-cyclodextrin/arginine) decorated with gold nanoparticles-capped cysteamine was fabricated on the surface of gold electrodes. Field emission-SEM and energy-dispersive X-ray spectroscopy showed the morphology and the presence of all elements related to all stages of the electrode modification. For three azo dyes (carmoisine, sunset yellow, and tartrazine), the analytical linear range was 10-8 to 10-4 M, with a low limit of quantification of about 1 nM. The engineered chemosensor showed suitable selectivity for analyzing candidate dyes in the presence of interfering agents. According to the scan rate results, the mass transport was controlled by diffusion, and the reaction on the chemosensor was electrochemically quasi-reversible. The results for different fruit juices confirmed this method's high potential application in detecting artificial color adulteration in food products.


Assuntos
Nanopartículas Metálicas , Tartrazina , Tartrazina/análise , Ouro/química , Sucos de Frutas e Vegetais , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Compostos Azo/análise , Eletrodos
20.
RSC Adv ; 12(44): 28473-28488, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320526

RESUMO

Hyaluronic Acid (HA) is a non-sulfated glycosaminoglycan, which is a potential biomarker that could be evaluated in the diagnosis of some cancers. For the first time, a novel label-free electrochemical immunosensor was developed based on modified ITO-PET (indium tin oxide-polyethylene terephthalate) electrodes for the sensitive recognition of hyaluronic acid (HA) in real samples. A disposable ITO-coated PET electrode was modified with gold nanoparticles (AuNPs) to construct a suitable substrate for the efficient immobilization of biotinylated antibodies of HA. Importantly, the encapsulation of biotinylated antibody of HA in KCC1-NH-CS2 was performed successfully, which was another innovative part of this bio-device construction. For determining the immobilization steps and optimization of the biosensor, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used. Furthermore, the morphological characterization of each ITO electrode surface was performed by field emission scanning electron microscopy (FESEM). Specific binding of gold nanoparticles supported CTAB to ITO-PET and its bioconjugation with the biotinylated antibody of HA was studied using the electroanalysis of the sensor performance. For the better performance of the antibody to generate an immunocomplex with HA (antigen), its encapsulation was performed, which led to the excellent behavior of the immunosensor. The proposed HA immunosensor indicated excellent reproducibility, high selectivity, and long-term stability. The HA electrochemical immunosensor performed perfectly with a wide determination range (0.078 to 160 ng mL-1) and a low limit of quantification (0.078 ng mL-1) in human plasma samples. It is recommended that the designed biosensor can be used as a diagnostic tool in clinical bioassays in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...