Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(28): 9853-9859, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34229433

RESUMO

In order to advance the development of molecular electronic devices, it is mandatory to improve the understanding of electron transport and functionalities in single molecules, integrated in a well-defined environment. However, limited information can be obtained by solely analyzing I-V characteristics, whence multiparameter studies are required to obtain more information on such systems including chemical bonds, geometry, and intramolecular strain. Therefore, we developed an analytical method incorporating an optical near-field technique, which allows us to investigate single-molecule junctions at variable temperatures in strong optical fields. An apertureless near-field emitter acts as a counter electrode and a plasmonic waveguide to focus surface plasmon polaritons into the molecular junctions, where a strongly enhanced evanescent field is confined to only a few nanometers around the apex of the tip. The proof of concept, even at low temperatures, is demonstrated by simultaneously investigating electronic and optical features of the molecule p-terphenyl-4,4″-dithiol in dependence of its charge state. This multichannel method can be employed to analyze a variety of nearly unexplored properties in single-molecule junctions such as photoconductance and photocurrent generation and allows a characterization of the molecular junctions by spectroscopic means as well.

2.
J Am Chem Soc ; 140(14): 4835-4840, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29565575

RESUMO

Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...