Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 128(1): 1-7, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30683592

RESUMO

Tyrosinase is an industrially useful enzyme, however, it causes gill browning of Lentinula edodes fruiting bodies during preservation. In this study, we constructed two vectors, pChG-gTs and pChG-gTa, expressing sense and antisense tyrosinase gene of L. edodes, respectively, using promoters derived from the glyceraldehyde-3-phosphate dehydrogenase gene. The host strain SR-1 of L. edodes was selected because of its fast growth, high protoplast yield, and high regeneration rate. Upon transformation of the host strain SR-1 with the pChG-gTs vector, a clone with 3.6-fold and 14.5-fold higher tyrosinase activity in vegetative mycelia and in fresh gills, respectively, than that of the host strain was obtained from nine transformants. Similarly, two clones containing the pChG-gTa vector with effectively repressed tyrosinase gene expression in vegetative mycelia and gills during the late stage of post-harvest preservation of fruiting bodies were obtained from 10 transformants. However, it remained unclear whether repression of the tyrosinase gene prevented gill browning, as the host strain also showed less browning than a commercial strain. Thus, this study highlights the usefulness of the pChG vector in expressing homologous enzyme coding genes in the vegetative mycelia and fruiting bodies of L. edodes.


Assuntos
Quitina Sintase/genética , Vetores Genéticos/genética , Monofenol Mono-Oxigenase/genética , Regiões Promotoras Genéticas/genética , Cogumelos Shiitake/genética , Transformação Genética , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Inativação Gênica/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Organismos Geneticamente Modificados , Cogumelos Shiitake/enzimologia , Cogumelos Shiitake/crescimento & desenvolvimento , Transformação Genética/genética , Regulação para Cima/genética
2.
Traffic Inj Prev ; 9(6): 574-82, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19058105

RESUMO

OBJECTIVES: The objective of this study is to examine the effectiveness of the active head restraint system in reducing neck injury risk of car occupants in low-speed rear impacts. METHODS: A human body FE model "THUMS" was used to simulate head and neck kinematics of the occupant and to evaluate loading to the neck. Joint capsule strain was calculated to predict neck injury risk as well as NIC. The validity of the model was confirmed comparing its mechanical responses to those in human subjects in the literatures. Seat FE models were also prepared representing one with a fixed head restraint and the other one with an active head restraint system. The active head restraint system was designed to move the head restraint forward and upward when the lower unit was lower unit was loaded by the pelvis. Rear impact simulations were performed assuming a triangular acceleration pulse at a delta-V of 25 km/h. RESULTS: The model reproduced similar head and neck motions to those measured in the human volunteer test, except for active muscular responses. The calculated joint capsule strain also showed a good match with those of PMHS tests in the literature. A rear-impact simulation was conducted using the model with the fixed head restraint. The result revealed that NIC was strongly correlated with the relative acceleration between the head and the torso and that its maximum peak appeared when the head contacted the head restraint. It was also found that joint capsule strain grew in later timing synchronizing with the relative displacement. Another simulation with the active head restraint system showed that both NIC and joint capsule strain were lowered owing to the forward and upward motion of the head restraint. A close investigation of the vertebral motion indicated that the active head restraint reduced the magnitude of shear deformation in the facet joint, which contributed to the strain growth in the fixed head restraint case. CONCLUSIONS: Rear-impact simulations were conducted using a human body FE model, THUMS, representing an average-size male occupant. The cervical system including the facet joint capsules was incorporated to the model. The validity of the model was examined comparing its mechanical responses to those in the literature such as the whole body motion of the volunteer subject and the vertebral motion in the PMHS tests. Rear-impact simulations were conducted using the validated THUMS model and two prototype seat models; one had a fixed head restraint and the other one was equipped with an active head restraint system. The active head restraint system works moving the head restraint forward and upward when the lower unit is loaded by the pelvis. The head and neck kinematics and responses were analyzed from the simulation results. The force and acceleration rose at the pelvis first, followed by T1 and the head. The early timing of force rise and its magnitude indicated that the pelvis force was a good trigger for the active head restraint system. The results showed that the head was supported earlier in a case with the active head restraint system, and both NIC and joint capsule strain were lowered. The study also analyzed the mechanism of strain growth in the joint capsules. Relatively greater strain was observed in the direction of the facet joint surface, which was around 45 degrees inclined to the spinal column. The forward and upward motion of the active head restraint were aligned with the direction of the joint deformation and contributed to lower strain in the joint capsules. The results indicated that the active head restraint could help reduce the neck injury risk not only by supporting the head at an early timing but also through its trajectory stopping the joint deformation.


Assuntos
Acidentes de Trânsito , Automóveis , Dispositivos de Proteção da Cabeça , Lesões do Pescoço/prevenção & controle , Aceleração , Adulto , Fenômenos Biomecânicos , Tamanho Corporal , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Masculino , Modelos Biológicos , Lesões do Pescoço/etiologia , Lesões do Pescoço/fisiopatologia , Estresse Mecânico
3.
Stapp Car Crash J ; 50: 545-66, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17311176

RESUMO

Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues. A rear-end collision was then simulated using THUMS and a prototype seat model, assuming a delta-V of 25 km/h. The trajectory of the vertebrae was analyzed in a local coordinate system defined along the joint surface. Strain growth in the joint capsules was explained, as related to contact events between the occupant and the seat. A new seat concept was proposed to help lessen the loading level to the neck soft tissues. The foam material of the seat back was softened, the initial gap behind the head was reduced and the head restraint was stiffened for firm support. The lower seat back frame was also reinforced to withstand the impact severity at the given delta-V. Another rear impact simulation was conducted using the new seat concept model to examine the effectiveness of the new concept. The joint capsule strain was found to be relatively lower with the new seat concept. The study also discusses the influence of seat parameters to the vertebral motion and the resultant strain in the joint capsules. The meaning of the contact timing of the head to the head restraint was examined based on the results in terms of correlation with injury indicators such as NIC and the joint capsule strain.


Assuntos
Aceleração/efeitos adversos , Acidentes de Trânsito , Vértebras Cervicais/fisiopatologia , Cápsula Articular/fisiopatologia , Modelos Biológicos , Estimulação Física/efeitos adversos , Traumatismos em Chicotada/fisiopatologia , Fenômenos Biomecânicos/métodos , Vértebras Cervicais/lesões , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Humanos , Cápsula Articular/lesões , Movimento , Medição de Risco/métodos , Fatores de Risco , Estresse Mecânico , Traumatismos em Chicotada/etiologia
4.
Stapp Car Crash J ; 49: 117-31, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17096271

RESUMO

Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so as not to directly load the anterior protuberance of the tibial plateau in restraining of the knee. A frontal crash simulation was performed using a partial vehicle model with the THUMS seated. The performance and effects of the knee airbag, as one of the candidates for knee restraint devices, were evaluated through the simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...