Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Med ; 66(1): 8-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21656335

RESUMO

Excessive receptor activator of NF-κB ligand (RANKL) signaling causes enhanced osteoclast formation and bone resorption. The downregulation of RANKL expression and its downstream signals may be an effective therapeutic approach to the treatment of bone loss diseases such as osteoporosis. Here, we found that coptisine, one of the isoquinoline alkaloids from Coptidis Rhizoma, exhibited inhibitory effects on osteoclastogenesis in vitro. Although coptisine has been studied for its antipyretic, antiphotooxidative, dampness dispelling, antidote, antinociceptive, and anti-inflammatory activities in vitro and in vivo, its effects on osteoclastogenesis have not been investigated. Therefore, we evaluated the effects of coptisine on osteoblastic cells as well as osteoclast precursors for osteoclastogenesis in vitro. The addition of coptisine to cocultures of mouse bone marrow cells and primary osteoblastic cells with 10(-8) M 1α,25(OH)(2)D(3) caused significant inhibition of osteoclast formation in a dose-dependent manner. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that coptisine inhibited RANKL gene expression and stimulated the osteoprotegerin gene expression induced by 1α,25(OH)(2)D(3) in osteoblastic cells. Coptisine strongly inhibited RANKL-induced osteoclast formation when added during the early stage of bone marrow macrophage (BMM) cultures, suggesting that it acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, coptisine inhibited NF-κB p65 phosphorylations, which are regulated in response to RANKL in BMMs. Coptisine also inhibited the RANKL-induced expression of NFATc1, which is a key transcription factor. In addition, 10 µM coptisine significantly inhibited both the survival of mature osteoclasts and their pit-forming activity in cocultures. Thus, coptisine has potential for the treatment or prevention of several bone diseases characterized by excessive bone destruction.


Assuntos
Berberina/análogos & derivados , Conservadores da Densidade Óssea/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Animais , Berberina/farmacologia , Células da Medula Óssea/metabolismo , Calcitriol/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/genética , Fosforilação , Ligante RANK/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
2.
J Cell Biochem ; 113(2): 440-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21678460

RESUMO

The mass and function of bones depend on the maintenance of a complicated balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. An inhibitor of osteoclast differentiation and/or function is expected to be useful for treatment of bone lytic diseases such as osteoporosis, rheumatoid arthritis, and tumor metastasis into bone. Biselyngbyaside is a recently isolated macrolide compound from marine cyanobacteria Lyngbya sp. that shows wide-spectrum cytotoxicity toward human tumor cell lines. In this study, we investigated the effects of biselyngbyaside on osteoclast differentiation and function. Biselyngbyaside inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in mouse monocytic RAW264 cells and primary bone marrow-derived macrophages at a low concentration. Similarly, biselyngbyaside suppressed osteoblastic cell-mediated osteoclast differentiation in cocultures. In the RANKL-induced signaling pathway, biselyngbyaside inhibited the expression of c-Fos and NFATc1, which are important transcription factors in osteoclast differentiation. In mature osteoclasts, biselyngbyaside decreased resorption-pit formation. Biselyngbyaside also induced apoptosis accompanied by the induction of caspase-3 activation and nuclear condensation, and these effects were negated by the pancaspase inhibitor z-VAD-FMK. Taken together, the present findings indicate that biselyngbyaside suppresses bone resorption via inhibition of osteoclastogenesis and induction of apoptosis. Thus, biselyngbyaside may be useful for the prevention of bone lytic diseases.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Macrolídeos/farmacologia , Oscillatoria/química , Osteoclastos/fisiologia , Animais , Antineoplásicos/isolamento & purificação , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Invaginações Revestidas da Membrana Celular/efeitos dos fármacos , Invaginações Revestidas da Membrana Celular/metabolismo , Técnicas de Cocultura , Humanos , Macrolídeos/isolamento & purificação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
Eur J Pharmacol ; 650(2-3): 511-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21047508

RESUMO

Bone homeostasis is controlled by the balance between osteoblastic bone formation and osteoclastic bone resorption. Excessive bone resorption is involved in the pathogenesis of bone-related disorders such as osteoporosis, arthritis and periodontitis. To obtain new antiresorptive agents, we searched for natural compounds that can inhibit osteoclast differentiation and function. We found that harmine, a ß-carboline alkaloid, inhibited multinucleated osteoclast formation induced by receptor activator of nuclear factor-κB ligand (RANKL) in RAW264.7 cells. Similar results were obtained in cultures of bone marrow macrophages supplemented with macrophage colony-stimulating factor and RANKL, as well as in cocultures of bone marrow cells and osteoblastic UAMS-32 cells in the presence of vitamin D(3) and prostaglandin E(2). Furthermore, harmine prevented RANKL-induced bone resorption in both cell and bone tissue cultures. Treatment with harmine (10 mg/kg/day) also prevented bone loss in ovariectomized osteoporosis model mice. Structure-activity relationship studies showed that the C3-C4 double bond and 7-methoxy group of harmine are important for its inhibitory activity on osteoclast differentiation. In mechanistic studies, we found that harmine inhibited the RANKL-induced expression of c-Fos and subsequent expression of nuclear factor of activated T cells (NFAT) c1, which is a master regulator of osteoclastogenesis. However, harmine did not affect early signaling molecules such as ERK, p38 MAPK and IκBα. These results indicate that harmine inhibits osteoclast formation via downregulation of c-Fos and NFATc1 induced by RANKL and represses bone resorption. These novel findings may be useful for the treatment of bone-destructive diseases.


Assuntos
Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Harmina/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Células da Medula Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo , Feminino , Harmina/química , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/fisiologia , Ovariectomia , Ligante RANK/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
4.
Biol Pharm Bull ; 33(3): 487-92, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20190414

RESUMO

Honokiol, a neolignan, is a physiologically active component of kouboku (Magnolia obovata), a herb used in traditional Chinese medicine. This study investigated the effects of honokiol on the differentiation and function of osteoclasts induced by receptor activator of nuclear factor-kappaB ligand (RANKL). Honokiol markedly inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity and the formation of TRAP-positive multinucleated cells in both bone marrow-derived monocytes and RAW264 cells. In experiments to elucidate its mechanism of action, honokiol was found to suppress RANKL-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The RANKL-induced expressions of c-Fos and nuclear factor of activated T cells-c1 (NFATc1), which are crucial transcriptional factors for osteoclastogenesis, were also reduced by treatment with honokiol. Furthermore, honokiol induced disruption of the actin rings in mature osteoclasts (mOCs) without affecting the cell viability and suppressed osteoclastic pit formation on dentin slices. Taken together, these results suggest that honokiol inhibits osteoclast differentiation by suppressing the activation of MAPKs (p38 MAPK, ERK and JNK), decreasing the expressions of c-Fos and NFATc1, and attenuates bone resorption by disrupting the actin rings in mOCs. Therefore, honokiol could prove useful for the treatment of bone diseases associated with excessive bone resorption.


Assuntos
Compostos de Bifenilo/farmacologia , Conservadores da Densidade Óssea/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Lignanas/farmacologia , Magnolia/química , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fosfatase Ácida/metabolismo , Actinas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Reabsorção Óssea/metabolismo , Dentina/efeitos dos fármacos , Isoenzimas/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Fosfatase Ácida Resistente a Tartarato
5.
Cytotechnology ; 61(3): 125-34, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20162352

RESUMO

Osteoclasts are multinucleated cells that play a crucial role in bone resorption, and are formed by the fusion of mononuclear osteoclasts derived from osteoclast precursors of the macrophage lineage. Compounds that specifically target functional osteoclasts would be ideal candidates for anti-resorptive agents for clinical applications. In the present study, we investigated the effects of luteolin, a flavonoid, on the regulation of receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis, functions and signaling pathway. Addition of luteolin to a coculture system of mouse bone marrow cells and ST2 cells in the presence of 10(-8) M 1alpha,25(OH)(2)D(3) caused significant inhibition of osteoclastogenesis. Luteolin had no effects on the 1alpha,25(OH)(2)D(3)-induced expressions of RANKL, osteoprotegerin and macrophage colony-stimulating factor mRNAs. Next, we examined the direct effects of luteolin on osteoclast precursors using bone marrow macrophages and RAW264.7 cells. Luteolin completely inhibited RANKL-induced osteoclast formation. Moreover, luteolin inhibited the bone resorption by mature osteoclasts accompanied by the disruption of their actin rings, and these effects were reversely induced by the disruption of the actin rings in mature osteoclasts. Finally, we found that luteolin inhibited RANKL-induced osteoclastogenesis through the suppression of ATF2, downstream of p38 MAPK and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) expression, respectively. Taken together, the present results indicate that naturally occurring luteolin has inhibitory activities toward both osteoclast differentiation and functions through inhibition of RANKL-induced signaling pathway as well as actin ring disruption, respectively.

6.
Talanta ; 75(4): 944-9, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18585167

RESUMO

The membrane filtration was examined as an effective and selective method for collection of Al(III) ions from aqueous solutions using Alizarin Yellow R, one of a pH-indicator, as a precipitating reagent. For preparation of aqueous solutions without precipitate or turbidity, a non-ionic surfactant, Triton X-100, was used as a solubilizing reagent for insoluble materials. Three metal ions, Al(III), V(III) and Cu(II) ions, were able to be collected as yellow-orange precipitates from aqueous solutions controlled in a range of pH 4-7, pH 4-9, and pH 5.5-12, respectively, on a membrane filter by filtration under suction. Hydrogen peroxide and o-phenanthroline were found to be capable of masking V(III) and Cu(II) ions in a range of pH 5.5-8 in which Al(III) ions were collected. This membrane filtration was applied to selective separation and determination of Al(III) ions in tap water.

7.
Biochem Biophys Res Commun ; 355(1): 10-5, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17291456

RESUMO

Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-kappaB ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Compostos Orgânicos de Estanho/farmacologia , Osteoclastos/citologia , Receptores do Ácido Retinoico/fisiologia , Receptores X de Retinoides/fisiologia , Compostos de Trialquitina/farmacologia , Animais , Reabsorção Óssea/fisiopatologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Macrófagos , Camundongos , Osteoclastos/efeitos dos fármacos , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores X de Retinoides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Anal Sci ; 19(2): 265-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12608757

RESUMO

A membrane filtration method was examined concerning the effective collection of iron(III) from a homogeneous aqueous solution with Chromazurol B (CAB), one of the triphenylmethane dyes, as a precipitating reagent in the presence of a non-ionic surfactant, polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl]ether (Triton X-100). A formed blue Fe(III)-CAB complex was collected as a precipitate on a membrane filter by filtration under suction from a homogeneous aqueous solution in the pH range over about 2. The original solution was prepared at a concentration ratio of CAB to Fe(III) of to 10, and that of Triton X-100 to CAB of 10 to 100. It was then adjusted to a pH value of between 1.0 and 6.5. A linear relationship (r = 0.999) was obtained between the initial concentration and the found one of Fe(III) in the range of 2.0 x 10(-5) to 4.0 x 10(-4) mol dm(-3) at a fixed concentration ratio of CAB to Fe(III) of 3 and that of Triton X-100 to CAB of 20. This membrane filtration with CAB and Triton X-100 may be utilized for the separation of Fe(III) as a background species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...