Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Plant Cell Physiol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822700

RESUMO

Marchantia polymorpha has become an important model system for comparative studies and synthetic biology. The systematic characterisation of genetic elements would make heterologous gene expression more predictable in this testbed for gene circuit assembly and bioproduction. Yet, the toolbox of genetic parts for Marchantia includes only a few constitutive promoters that need benchmarking to assess their utility. We compared the expression patterns of previously characterized and new constitutive promoters. We found that driving expression with the double enhancer version of the cauliflower mosaic virus 35S promoter (pro35S×2) provided the highest yield of proteins although it also inhibits the growth of transformants. In contrast, promoters derived from the Marchantia ETHYLENE RESPONSE FACTOR 1 (MpERF1) and the CLASS II HOMEODOMAIN-LEUCINE ZIPPER (MpC2HDZ) genes drove expression to higher levels across all tissues without growth penalty and can provide intermediate levels of gene expression. In addition, we showed that the cytosol is the best subcellular compartment to target heterologous proteins for higher levels of expression without a significant growth burden. To demonstrate the potential of these promoters in Marchantia, we expressed the polycistronic RUBY betalain synthesis cassette to demonstrate coordinated expression of metabolic enzymes. A heat-shock inducible promoter was used to further mitigate growth burdens associated with high amounts of betalain accumulation. We have expanded the existing toolkit for gene expression in Marchantia and provide new resources for the Marchantia research community.

2.
Plant Cell ; 36(6): 2140-2159, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38391349

RESUMO

Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.


Assuntos
Regulação da Expressão Gênica de Plantas , Marchantia , Meristema , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento
3.
Plant J ; 116(2): 604-628, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37583263

RESUMO

A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.


Assuntos
Marchantia , Marchantia/genética , Marchantia/metabolismo , Ácidos Indolacéticos/metabolismo , Divisão Celular
4.
Micromachines (Basel) ; 14(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36838015

RESUMO

The rising population and the ongoing climate crisis call for improved means to monitor and optimise agriculture. A promising approach to tackle current challenges in food production is the early diagnosis of plant diseases through non-invasive methods, such as the detection of volatiles. However, current devices for detection of multiple volatiles are based on electronic noses, which are expensive, require complex circuit assembly, may involve metal oxides with heating elements, and cannot easily be adapted for some applications that require miniaturisation or limit front-end use of electronic components. To address these challenges, a low-cost optoelectronic nose using chemo-responsive colorimetric dyes drop-casted onto filter paper has been developed in the current work. The final sensors could be used for the quantitative detection of up to six plant volatiles through changes in colour intensities with a sub-ppm level limit of detection, one of the lowest limits of detection reported so far using colorimetric gas sensors. Sensor colouration could be analysed using a low-cost spectrometer and the results could be processed using a microcontroller. The measured volatiles could be used for the early detection of plant abiotic stress as early as two days after exposure to two different stresses: high salinity and starvation. This approach allowed a lowering of costs to GBP 1 per diagnostic sensing paper. Furthermore, the small size of the paper sensors allows for their use in confined settings, such as Petri dishes. This detection of abiotic stress could be easily achieved by exposing the devices to living plants for 1 h. This technology has the potential to be used for monitoring of plant development in field applications, early recognition of stress, implementation of preventative measures, and mitigation of harvest losses.

5.
Plant J ; 114(3): 699-718, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811359

RESUMO

Land plants comprise two large monophyletic lineages, the vascular plants and the bryophytes, which diverged from their most recent common ancestor approximately 480 million years ago. Of the three lineages of bryophytes, only the mosses and the liverworts are systematically investigated, while the hornworts are understudied. Despite their importance for understanding fundamental questions of land plant evolution, they only recently became amenable to experimental investigation, with Anthoceros agrestis being developed as a hornwort model system. Availability of a high-quality genome assembly and a recently developed genetic transformation technique makes A. agrestis an attractive model species for hornworts. Here we describe an updated and optimized transformation protocol for A. agrestis, which can be successfully used to genetically modify one more strain of A. agrestis and three more hornwort species, Anthoceros punctatus, Leiosporoceros dussii, and Phaeoceros carolinianus. The new transformation method is less laborious, faster, and results in the generation of greatly increased numbers of transformants compared with the previous method. We have also developed a new selection marker for transformation. Finally, we report the development of a set of different cellular localization signal peptides for hornworts providing new tools to better understand the hornwort cell biology.


Assuntos
Anthocerotophyta , Briófitas , Embriófitas , Anthocerotophyta/genética , Filogenia , Briófitas/genética , Sementes
6.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679574

RESUMO

The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, these methods rely on bulky and expensive equipment, and they are time-consuming. The present work reports for the first time a low-cost sensing device that can be used for the simultaneous determination of sap K+ and pH in living plants by means of reverse iontophoresis. A screen-printed electrode was modified by deposition of a K+-selective membrane, achieving a super-Nernstian sensitivity of 70 mV Log[K+]−1 and a limit of detection within the micromolar level. In addition, the cathode material of the reverse iontophoresis device was modified by electrodeposition of RuOx particles. This electrode could be used for the direct extraction of ions from plant leaves and the amperometric determination of pH within the physiological range (pH 3−8), triggered by the selective reaction of RuOx with H+. A portable and low-cost (<£60) microcontroller-based device was additionally designed to enable its use in low-resource settings. The applicability of this system was demonstrated by measuring the changes in concentration of K+ and pH in tomato plants before and after watering with deionised water. These results represent a step forward in the design of affordable and non-invasive devices for the monitoring of key biomarkers in plants, with a plethora of applications in smart farming and precision agriculture among others.


Assuntos
Galvanoplastia , Iontoforese , Eletrodos , Íons
7.
Biosensors (Basel) ; 12(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35884250

RESUMO

The development of sensing devices for precision agriculture is crucial to boost crop yields and limit shortages in food productions due to the growing population. However, current approaches cannot provide direct information about the physiological status of the plants, reducing sensing accuracy. The development of implanted devices for plant monitoring represents a step forward in this field, enabling the direct assessment of key biomarkers in plants. However, available devices are expensive and cannot be used for long-term applications. The current work presents the application of ruthenium oxide-based nanofilms for the in vivo monitoring of pH in plants. The sensors were manufactured using the low-cost electrodeposition of RuO2 films, and the final device could be successfully incorporated for the monitoring of xylem sap pH for at least 10 h. RuO2 nanoparticles were chosen as the sensing material due to its biocompatibility and chemical stability. To reduce the noise rates and drift of the sensors, a protective layer consisting of a cellulose/PDMS hybrid material was deposited by an aerosol method (>GBP 50), involving off-the-shelf devices, leading to a good control of film thickness. Nanometrically thin films with a thickness of 80 nm and roughness below 3 nm were fabricated. This film led to a seven-fold decrease in drift while preserving the selectivity of the sensors towards H+ ions. The sensing devices were tested in vivo by implantation inside a tomato plant. Environmental parameters such as humidity and temperature were additionally monitored using a low-cost Wio Terminal device, and the data were sent wirelessly to an online server. The interactions between plant tissues and metal oxide-based sensors were finally studied, evidencing the formation of a lignified layer between the sensing film and xylem. Thus, this work reports for the first time a low-cost electrochemical sensor that can be used for the continuous monitoring of pH in xylem sap. This device can be easily modified to improve the long-term performance when implanted inside plant tissues, representing a step forward in the development of precision agriculture technologies.


Assuntos
Solanum lycopersicum , Agricultura , Concentração de Íons de Hidrogênio , Monitorização Fisiológica , Óxidos
8.
ACS Synth Biol ; 11(3): 1114-1128, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35259873

RESUMO

Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme BsaI. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203-424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.


Assuntos
Nucleotídeos , Ácido Pirúvico , Sistema Livre de Células , Biossíntese de Proteínas
9.
J Exp Bot ; 73(11): 3569-3583, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35304891

RESUMO

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs. The cost of a larger root system did not impact shoot biomass. Greater biomass production could be achieved through increased root length or through specific root hair characteristics. A greater number of root hairs may provide a low-resistance pathway under elevated N conditions, while root hair length may enhance root zone exploration under low N conditions. The variability of N uptake and the expression levels of genes encoding nitrate transporters were measured. A positive correlation was found between root system size and high-affinity nitrate uptake, emphasizing the benefits of an exploratory root organ in N acquisition. The expression levels of NRT1.2/NPF4.6, NRT2.2, and NRT1.5/NPF7.3 negatively correlated with some root morphological traits. Such basic knowledge in Arabidopsis demonstrates the importance of root phenes to improve N acquisition and paves the way to design eudicot ideotypes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomassa , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Raízes de Plantas/metabolismo
10.
Front Bioeng Biotechnol ; 9: 727584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497801

RESUMO

Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been mainly implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Based on preliminary demonstrations of toehold sensors working on lysates, we describe the fast prototyping of RNA toehold switch-based sensors that can be produced locally and reduce the cost of sensors by two orders of magnitude. We demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize these lysates with a CRISPRi strategy to enhance the stability of linear DNAs by knocking-down genes responsible for linear DNA degradation. This enables the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toehold sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.

11.
ACS Synth Biol ; 10(7): 1651-1666, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097383

RESUMO

Chloroplasts are attractive platforms for synthetic biology applications since they are capable of driving very high levels of transgene expression, if mRNA production and stability are properly regulated. However, plastid transformation is a slow process and currently limited to a few plant species. The liverwort Marchantia polymorpha is a simple model plant that allows rapid transformation studies; however, its potential for protein hyperexpression has not been fully exploited. This is partially due to the fact that chloroplast post-transcriptional regulation is poorly characterized in this plant. We have mapped patterns of transcription in Marchantia chloroplasts. Furthermore, we have obtained and compared sequences from 51 bryophyte species and identified putative sites for pentatricopeptide repeat protein binding that are thought to play important roles in mRNA stabilization. Candidate binding sites were tested for their ability to confer high levels of reporter gene expression in Marchantia chloroplasts, and levels of protein production and effects on growth were measured in homoplastic transformed plants. We have produced novel DNA tools for protein hyperexpression in this facile plant system that is a test-bed for chloroplast engineering.


Assuntos
Cloroplastos/genética , DNA Recombinante/genética , Marchantia/genética , Genes de Plantas , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Biologia Sintética/métodos , Transcrição Gênica , Transcriptoma , Transformação Genética
12.
Methods Mol Biol ; 2317: 343-365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028781

RESUMO

The bryophyte Marchantia polymorpha , has attracted significant attention as a powerful experimental system for studying aspects of plant biology including synthetic biology applications. We describe an efficient and simple recursive Type IIS DNA assembly method for the generation of DNA constructs for chloroplast genome manipulation, and an optimized technique for Marchantia chloroplast genome transformation. The utility of the system was demonstrated by the expression of a chloroplast codon-optimized cyan fluorescent protein.


Assuntos
Cloroplastos/genética , DNA de Plantas/genética , Engenharia Genética/métodos , Marchantia/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética , DNA de Plantas/metabolismo , Marchantia/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Biologia Sintética
13.
Nat Commun ; 11(1): 5545, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139718

RESUMO

During development, cells gain positional information through the interpretation of dynamic morphogen gradients. A proposed mechanism for interpreting opposing morphogen gradients is mutual inhibition of downstream transcription factors, but isolating the role of this specific motif within a natural network remains a challenge. Here, we engineer a synthetic morphogen-induced mutual inhibition circuit in E. coli populations and show that mutual inhibition alone is sufficient to produce stable domains of gene expression in response to dynamic morphogen gradients, provided the spatial average of the morphogens falls within the region of bistability at the single cell level. When we add sender devices, the resulting patterning circuit produces theoretically predicted self-organised gene expression domains in response to a single gradient. We develop computational models of our synthetic circuits parameterised to timecourse fluorescence data, providing both a theoretical and experimental framework for engineering morphogen-induced spatial patterning in cell populations.


Assuntos
Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Modelos Biológicos , Biologia Sintética , Fatores de Transcrição
14.
ACS Synth Biol ; 9(4): 864-882, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32163700

RESUMO

We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues. We describe new techniques for simple and efficient axenic propagation and maintenance of Marchantia lines with no requirement for glasshouse facilities. Marchantia plants spontaneously produce clonal propagules within a few weeks of regeneration, and lines can be amplified million-fold in a single generation by induction of the sexual phase of growth, crossing, and harvesting of progeny spores. The plant has a simple morphology and genome with reduced gene redundancy, and the dominant phase of its life cycle is haploid, making genetic analysis easier. We have built robust Loop assembly vector systems for nuclear and chloroplast transformation and genome editing. These have provided the basis for building and testing a modular library of standardized DNA elements with highly desirable properties. We have screened transcriptomic data to identify a range of candidate genes, extracted putative promoter sequences, and tested them in vivo to identify new constitutive promoter elements. The resources have been combined into a toolkit for plant bioengineering that is accessible for laboratories without access to traditional facilities for plant biology research. The toolkit is being made available under the terms of the OpenMTA and will facilitate the establishment of common standards and the use of this simple plant as testbed for synthetic biology.


Assuntos
Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas/genética , Marchantia , Software , Biologia Sintética/métodos , Cloroplastos/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Genes de Plantas/genética , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/fisiologia , Transcriptoma/genética
15.
New Phytol ; 223(2): 575-581, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30920664

RESUMO

Methylation of DNA is an epigenetic mechanism for the control of gene expression. Alterations in the regulatory pathways involved in the establishment, perpetuation and removal of DNA methylation can lead to severe developmental alterations. Our understanding of the mechanistic aspects and relevance of DNA methylation comes from remarkable studies in well-established angiosperm plant models including maize and Arabidopsis. The study of plant models positioned at basal lineages opens exciting opportunities to expand our knowledge on the function and evolution of the components of DNA methylation. In this Tansley Insight, we summarize current progress in our understanding of the molecular basis and relevance of DNA methylation in the liverwort Marchantia polymorpha.


Assuntos
Metilação de DNA/genética , Marchantia/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Marchantia/crescimento & desenvolvimento , Modelos Biológicos , RNA de Plantas/metabolismo
16.
New Phytol ; 222(1): 628-640, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521109

RESUMO

High-efficiency methods for DNA assembly have enabled the routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customization, elaborate vector sets or serial manipulations for the different stages of assembly. We have developed Loop assembly based on a recursive approach to DNA fabrication. The system makes use of two Type IIS restriction endonucleases and corresponding vector sets for efficient and parallel assembly of large DNA circuits. Standardized level 0 parts can be assembled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets. The vectors also contain modular sites for hybrid assembly using sequence overlap methods. Loop assembly enables efficient and versatile DNA fabrication for plant transformation. We show the construction of plasmids up to 16 genes and 38 kb with high efficiency (> 80%). We have characterized Loop assembly on over 200 different DNA constructs and validated the fidelity of the method by high-throughput Illumina plasmid sequencing. Our method provides a simple generalized solution for DNA construction with standardized parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and open access.


Assuntos
DNA de Plantas/genética , Vetores Genéticos/genética , Automação , Marchantia/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
18.
J R Soc Interface ; 15(146)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232243

RESUMO

Dense bacterial communities, known as biofilms, can have functional spatial organization driven by self-organizing chemical and physical interactions between cells, and their environment. In this work, we investigated intercellular adhesion, a pervasive property of bacteria in biofilms, to identify effects on the internal structure of bacterial colonies. We expressed the self-recognizing ag43 adhesin protein in Escherichia coli to generate adhesion between cells, which caused aggregation in liquid culture and altered microcolony morphology on solid media. We combined the adhesive phenotype with an artificial colony patterning system based on plasmid segregation, which marked clonal lineage domains in colonies grown from single cells. Engineered E. coli were grown to colonies containing domains with varying adhesive properties, and investigated with microscopy, image processing and computational modelling techniques. We found that intercellular adhesion elongated the fractal-like boundary between cell lineages only when both domains within the colony were adhesive, by increasing the rotational motion during colony growth. Our work demonstrates that adhesive intercellular interactions can have significant effects on the spatial organization of bacterial populations, which can be exploited for biofilm engineering. Furthermore, our approach provides a robust platform to study the influence of intercellular interactions on spatial structure in bacterial populations.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana , Biofilmes , Algoritmos , Adesão Celular , Simulação por Computador , Escherichia coli , Proteínas de Escherichia coli/fisiologia , Fractais , Modelos Biológicos , Movimento (Física) , Fenótipo , Plasmídeos
19.
PLoS One ; 13(5): e0196810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723275

RESUMO

Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Marchantia/citologia , Técnicas Analíticas Microfluídicas/métodos , Protoplastos/química , Análise de Célula Única/métodos , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Separação Celular/instrumentação , Separação Celular/métodos , Composição de Medicamentos , Desenho de Equipamento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Genômica/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Temperatura Alta , Dispositivos Lab-On-A-Chip , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Marchantia/química , Marchantia/genética , Microscopia de Fluorescência , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Análise de Célula Única/instrumentação , Processos Estocásticos , Transformação Genética
20.
Nat Commun ; 9(1): 776, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472537

RESUMO

Modern genetic tools allow the dissection and emulation of fundamental mechanisms shaping morphogenesis in multicellular organisms. Several synthetic genetic circuits for control of multicellular patterning have been reported to date. However, hierarchical induction of gene expression domains has received little attention from synthetic biologists, despite its importance in biological self-organization. Here we report a synthetic genetic system implementing population-based AND-logic for programmed autonomous induction of bacterial gene expression domains. We develop a ratiometric assay for bacteriophage T7 RNA polymerase activity and use it to systematically characterize different intact and split enzyme variants. We then utilize the best-performing variant to build a three-color patterning system responsive to two different homoserine lactones. We validate the AND gate-like behavior of this system both in cell suspension and in surface culture. Finally, we use the synthetic circuit in a membrane-based spatial assay to demonstrate programmed hierarchical patterning of gene expression across bacterial populations.


Assuntos
Bactérias/genética , Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Genes Sintéticos , Engenharia Genética , Regiões Promotoras Genéticas , Biologia Sintética/instrumentação , Biologia Sintética/métodos , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...