Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(7): 4079-4090, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142614

RESUMO

Recent studies have shown that despite its remoteness, the Arctic region harbors some of the highest microplastic (MP) concentrations worldwide. Here, we present the results of a sampling campaign to assess the vertical distribution of MP particles (>11 µm) at five stations of the HAUSGARTEN observatory. Water column samples were taken with large volume pumps by filtering 218-561 L of seawater at two to four depth strata (near-surface, ∼300 m, ∼1000 m, and above seafloor), and sediment samples were taken with a multiple corer. MP concentrations in the water column ranged between 0 and 1287 N m-3 and in the sediment from 239 to 13 331 N kg-1. Fourier transform infrared spectroscopy (FTIR) imaging with automated data analysis showed that polyamide (39%) and ethylene-propylene-diene rubber (23%) were the most abundant polymers within the water samples and polyethylene-chlorinated (31%) in sediments. MPs ≤ 25 µm accounted for more than half of the synthetic particles in every sample. The largest MP particle recorded was in the 200 µm size class. The concentrations of fibers were not reported, as fiber detection by FTIR imaging was not available at the time of analyses. Two- and three-dimensional simulations of particle transport trajectories suggest different pathways for certain polymer types. A positive correlation between MP size composition and particulate organic carbon indicates interactions with biological processes in the water column.


Assuntos
Plásticos , Poluentes Químicos da Água , Regiões Árticas , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Água
2.
PLoS One ; 6(12): e29152, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216193

RESUMO

The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure "sponge" on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments.


Assuntos
Biologia Marinha , Nematoides/classificação , Animais , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...