Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109006, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361610

RESUMO

Many vaccines, including those using recombinant antigen subunits, rely on adjuvant(s) to enhance the efficacy of the host immune responses. Among the few adjuvants clinically approved, QS-21, a saponin-based immunomodulatory molecule isolated from the tree bark of Quillaja saponaria (QS) is used in complex formulations in approved effective vaccines. High demand of the QS raw material as well as manufacturing scalability limitation has been barriers here. We report for the first-time successful plant cell culture production of QS-21 having structural, chemical, and biologic, properties similar to the bark extracted product. These data ensure QS-21 and related saponins are broadly available and accessible to drug developers.

2.
Curr Microbiol ; 80(1): 16, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459236

RESUMO

Streptococcus agalactiae (group B Streptococcus, GBS) is a gram-positive bacterium that is an asymptomatic colonizer commonly found in the gastrointestinal and genitourinary tract of healthy adults. GBS is also the most common cause of life-threatening bacterial infections in newborns and is emerging as a pathogen in immunocompromised and diabetic adults. The GBS cell wall and covalently linked capsular polysaccharides (CPS) are vital to the protection of the bacterial cell and act as virulence factors. GBS-CPS have been successfully used to produce conjugate vaccines for all currently identified GBS serotypes. However, the mechanisms of biosynthesis and assembly of CPS and the other cell wall components remain poorly defined due to their complex surface structures. In this biosynthetic study of the GBS cell wall-CPS complex, glycolipids with varying lengths of glycosyl-chains were discovered. Among those, one of the smallest glycolipids (named GBS Lipid-α) was structurally characterized. Lipid-α is involved in GBS saccharide metabolism and presumably acts as a glycosyl acceptor to elongate the glycosyl chain. GBS Lipid-α was determined to be a 3-monosaccharide 1,2 acyl glycerol with a molecular mass in the range of m/z = 724-808. GBS Lipid-α is highly heterogenic with various acyl groups and glycosyl moieties. This knowledge will pave the way for future studies to elucidate the entire metabolic pathway and genes involved. The Lipid-α pathway may also exist in other bacterial species and has the potential to be a biomarker for future drug development.


Assuntos
Parede Celular , Streptococcus agalactiae , Recém-Nascido , Humanos , Adulto , Sorogrupo , Glicerol , Glicolipídeos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32553552

RESUMO

Spodoptera frugiperda is a widely distributed agricultural pest. It has previously been established that glycoproteins in the midgut microvillar membrane of insects are targets for toxins produced by different organisms as well as plant lectins. However, there is still little information about the N-glycome of membrane-bound midgut glycoproteins in Lepidoptera and other insect groups. The present study used mass spectrometry-based approaches to characterize the N-glycoproteins present in the midgut cell microvilli of Spodoptera frugiperda. We subjected midgut cell microvilli proteins to proteolytic digestion and enriched the resulting glycopeptides prior to analysis. We also performed endoglycosidase release of N-glycans in the presence of H218O determining the compositions of released N-glycans by MALDI-TOF MS analysis and established the occupancy of the potential N-glycosylation sites. We report here a total of 160 glycopeptides, representing 25 N-glycan compositions associated with 70 sites on 35 glycoproteins. Glycan compositions consistent with oligomannose, paucimannose and complex/hybrid N-glycans represent 35, 30 and 35% of the observed glycans, respectively. The two most common N-glycan compositions were the complex/hybrid Hex3HexNAc4dHex4 and the paucimannose structure that contains only the doubly-fucosylated trimannosylchitobiose core Hex3HexNAc2dHex2, each appearing in 22 occupied sites (13.8%). These findings enlighten aspects of the glycobiology of lepidopteran midgut microvilli.


Assuntos
Sistema Digestório/metabolismo , Proteínas de Insetos/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteoma/metabolismo , Spodoptera/metabolismo , Animais , Cromatografia Líquida , Glicosilação , Hidrolases/metabolismo , Espectrometria de Massas , Microvilosidades/metabolismo , Proteômica , Transferrina/metabolismo
4.
PLoS Negl Trop Dis ; 13(5): e0007352, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095564

RESUMO

BACKGROUND: Acanthamoeba castellanii, which causes keratitis and blindness in under-resourced countries, is an emerging pathogen worldwide, because of its association with contact lens use. The wall makes cysts resistant to sterilizing reagents in lens solutions and to antibiotics applied to the eye. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron microscopy and structured illumination microscopy (SIM) showed purified cyst walls of A. castellanii retained an outer ectocyst layer, an inner endocyst layer, and conical ostioles that connect them. Mass spectrometry showed candidate cyst wall proteins were dominated by three families of lectins (named here Jonah, Luke, and Leo), which bound well to cellulose and less well to chitin. An abundant Jonah lectin, which has one choice-of-anchor A (CAA) domain, was made early during encystation and localized to the ectocyst layer of cyst walls. An abundant Luke lectin, which has two carbohydrate-binding modules (CBM49), outlined small, flat ostioles in a single-layered primordial wall and localized to the endocyst layer and ostioles of mature walls. An abundant Leo lectin, which has two unique domains with eight Cys residues each (8-Cys), localized to the endocyst layer and ostioles. The Jonah lectin and glycopolymers, to which it binds, were accessible in the ectocyst layer. In contrast, Luke and Leo lectins and the glycopolymers, to which they bind, were mostly inaccessible in the endocyst layer and ostioles. CONCLUSIONS/SIGNIFICANCE: The most abundant A. castellanii cyst wall proteins are three sets of lectins, which have carbohydrate-binding modules that are conserved (CBM49s of Luke), newly characterized (CAA of Jonah), or unique to Acanthamoebae (8-Cys of Leo). Cyst wall formation is a tightly choreographed event, in which lectins and glycopolymers combine to form a mature wall with a protected endocyst layer. Because of its accessibility in the ectocyst layer, an abundant Jonah lectin is an excellent diagnostic target.


Assuntos
Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/metabolismo , Amebíase/parasitologia , Celulose/metabolismo , Lectinas/metabolismo , Proteínas de Protozoários/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/genética , Sequência de Aminoácidos , Humanos , Ceratite/parasitologia , Lectinas/química , Lectinas/genética , Estágios do Ciclo de Vida , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência
5.
Curr Microbiol ; 76(4): 398-409, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30603964

RESUMO

Cell wall hydrolases are enzymes that cleave bacterial cell walls by hydrolyzing specific bonds within peptidoglycan and other portions of the envelope. Two major sources of hydrolases in nature are from hosts and microbes. This study specifically investigated whether cell wall hydrolytic enzymes could be employed as exogenous reagents to augment the efficacy of antimicrobial agents against mycobacteria. Mycobacterium smegmatis cultures were treated with ten conventional antibiotics and six anti-tuberculosis drugs-alone or in combination with cell wall hydrolases. Culture turbidity, colony-forming units (CFUs), vital staining, and oxygen consumption were all monitored. The majority of antimicrobial agents tested alone only had minimal inhibitory effects on bacterial growth. However, the combination of cell wall hydrolases and most of the antimicrobial agents tested, revealed a synergistic effect that resulted in significant enhancement of bactericidal activity. Vital staining showed increased cellular damage when M. smegmatis and Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) were treated with both drug and lysozyme. Respiration analysis revealed stress responses when cells were treated with lysozyme and drugs individually, and an acute increase in oxygen consumption when treated with both drug and lysozyme. Similar trends were also observed for the other three enzymes (hydrolase-30, RipA-His6 and RpfE-His6) evaluated. These findings demonstrated that cell wall hydrolytic enzymes, as a group of biological agents, have the capability to improve the potency of many current antimicrobial drugs and render ineffective antibiotics effective in killing mycobacteria. This combinatorial approach may represent an important strategy to eliminate drug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Parede Celular/enzimologia , Hidrolases/metabolismo , Mycobacterium/efeitos dos fármacos , Antituberculosos/farmacologia , Contagem de Colônia Microbiana , Sinergismo Farmacológico , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium/enzimologia , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Oxigênio/metabolismo
6.
PLoS One ; 12(8): e0182395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792526

RESUMO

Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.


Assuntos
Cryptosporidium parvum/imunologia , Vacinas Protozoárias/química , Acetilgalactosamina/química , Biologia Computacional , Criptosporidiose/imunologia , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/enzimologia , Glicoproteínas/química , Espectrometria de Massas , Monossacarídeos/química , Miristatos/química , Palmitatos/química , Polissacarídeos/química , Proteínas de Protozoários/química
7.
Anal Chem ; 89(12): 6645-6655, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28530388

RESUMO

Glycomics and glycoproteomics analyses by mass spectrometry require efficient front-end separation methods to enable deep characterization of heterogeneous glycoform populations. Chromatography methods are generally limited in their ability to resolve glycoforms using mobile phases that are compatible with online liquid chromatography-mass spectrometry (LC-MS). The adoption of capillary electrophoresis-mass spectrometry methods (CE-MS) for glycomics and glycoproteomics is limited by the lack of convenient interfaces for coupling the CE devices to mass spectrometers. Here, we describe the application of a microfluidics-based CE-MS system for analysis of released glycans, glycopeptides and monosaccharides. We demonstrate a single CE method for three different modalities, thus contributing to comprehensive glycoproteomics analyses. In addition, we explored compatible sample derivatization methods. We used glycan TMT-labeling to improve electrophoretic migration and enable multiplexed quantitation by tandem MS. We used sialic acid linkage-specific derivatization methods to improve separation and the level of information obtained from a single analytical step. Capillary electrophoresis greatly improved glycoform separation for both released glycans and glycopeptides over that reported for chromatography modes more frequently employed for such analyses. Overall, the CE-MS method described here enables rapid setup and analysis of glycans and glycopeptides using mass spectrometry.


Assuntos
Glicopeptídeos/análise , Técnicas Analíticas Microfluídicas , Monossacarídeos/análise , Oligossacarídeos/análise , Eletroforese Capilar , Espectrometria de Massas , Modelos Moleculares
8.
Mol Cell Proteomics ; 16(4 suppl 1): S42-S53, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28179475

RESUMO

Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.


Assuntos
Cryptosporidium parvum/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Complexo de Golgi/metabolismo , Serina/metabolismo , Asparagina/metabolismo , Sítios de Ligação , Glicoproteínas/metabolismo , Humanos , Estrutura Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Proteômica/métodos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
Proc Natl Acad Sci U S A ; 113(41): 11567-11572, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663739

RESUMO

Toxoplasma gondii is an intracellular parasite that causes disseminated infections in fetuses and immunocompromised individuals. Although gene regulation is important for parasite differentiation and pathogenesis, little is known about protein organization in the nucleus. Here we show that the fucose-binding Aleuria aurantia lectin (AAL) binds to numerous punctate structures in the nuclei of tachyzoites, bradyzoites, and sporozoites but not oocysts. AAL also binds to Hammondia and Neospora nuclei but not to more distantly related apicomplexans. Analyses of the AAL-enriched fraction indicate that AAL binds O-linked fucose added to Ser/Thr residues present in or adjacent to Ser-rich domains (SRDs). Sixty-nine Ser-rich proteins were reproducibly enriched with AAL, including nucleoporins, mRNA-processing enzymes, and cell-signaling proteins. Two endogenous SRDs-containing proteins and an SRD-YFP fusion localize with AAL to the nuclear membrane. Superresolution microscopy showed that the majority of the AAL signal localizes in proximity to nuclear pore complexes. Host cells modify secreted proteins with O-fucose; here we describe the O-fucosylation pathway in the nucleocytosol of a eukaryote. Furthermore, these results suggest O-fucosylation is a mechanism by which proteins involved in gene expression accumulate near the NPC.


Assuntos
Fucose/metabolismo , Poro Nuclear/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Linhagem Celular , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Lectinas/metabolismo , Camundongos , Membrana Nuclear/metabolismo , Polissacarídeos/metabolismo , Domínios Proteicos , Proteínas de Protozoários/química , Especificidade da Espécie
10.
Mol Biol Cell ; 16(2): 507-18, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15548591

RESUMO

Fish keratocytes can generate rearward directed traction forces within front portions of the lamellipodium, suggesting that a retrograde flow of actin may also occur here but this was not detected by previous photoactivation experiments. To investigate the relationship between retrograde flow and traction force generation, we have transfected keratocytes with GFP-actin and used fluorescent speckle microscopy, to observe speckle flow. We detected a retrograde flow of actin within the leading lamellipodium that is inversely proportional to both protrusion rate and cell speed. To observe the effect of reducing contractility, we treated transfected cells with ML7, a potent inhibitor of myosin II. Surprisingly, ML7 treatment led to an increase in retrograde flow rate, together with a decrease in protrusion and cell speed, but only in rapidly moving cells. In slower moving cells, retrograde flow decreased, whereas protrusion rate and cell speed increased. These results suggest that there are two mechanisms for producing retrograde flow. One involves slippage between the cytoskeleton and adhesions, that decreases traction force production. The other involves slippage between adhesions and the substratum, which increases traction force production. We conclude that a biphasic relationship exists between retrograde actin flow and adhesiveness in moving keratocytes.


Assuntos
Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Microscopia de Fluorescência , Animais , Azepinas/farmacologia , Adesão Celular , Movimento Celular/fisiologia , Células Cultivadas , Córnea/citologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/fisiologia , Matriz Extracelular/metabolismo , Imunofluorescência , Corantes Fluorescentes , Gelatina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Cinética , Modelos Biológicos , Miosina Tipo II/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Naftalenos/farmacologia , Faloidina , Poecilia , Pseudópodes/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...