Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(36): 40719-40727, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805889

RESUMO

Hydrogels mimicking elastomeric biopolymers such as resilin, responsible for power-amplified activities in biological species necessary for locomotion, feeding, and defense have applications in soft robotics and prosthetics. Here, we report a bioinspired hydrogel synthesized through a free-radical polymerization reaction. By maintaining a balance between the hydrophilic and hydrophobic components, we obtain gels with an elastic modulus as high as 100 kPa, stretchability up to 800%, and resilience up to 98%. Such properties enable these gels to catapult projectiles. Furthermore, these gels achieve a retraction velocity of 16 m s-1 with an acceleration of 4 × 103 m s-2 when released from a stretched state, and these values are comparable to those observed in many biological species during a power amplification process. By utilizing and tuning the simple synthetic strategy used here, these gels can be used in soft robotics, prosthetics, and engineered devices where power amplification is desired.


Assuntos
Hidrogéis/química , Elasticidade , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
2.
J Colloid Interface Sci ; 563: 229-240, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874310

RESUMO

Nanoemulsions are widely used in applications such as in food products, pharmaceutical ingredients and cosmetics. Moreover, nanoemulsions have been a model colloidal system due to their ease of synthesis and the flexibility in formulations that allows one to engineer the inter-droplet potentials and thus to rationally tune the material microstructures and rheological properties. In this article, we study a nanoemulsion system in which the inter-droplet interactions are modulated by temperature and pH. We develop a nanoemulsion suspension in which the droplets are stabilized by weak acid surfactants whose charged state can be independently controlled by temperature and pH, leading to a responsive electrostatic repulsion. Moreover, the additional poly(ethylene glycol) segment (PEG) on the surfactant gives rise to a temperature responsive attraction between droplets via PEG-PEG association and ion-dipole interaction. The interplay of these three interactions gives rise to non-monotonic trends in material properties and structures as a function of temperature. The underlying mechanism resulting in these trends is obtained by carefully characterizing the nanoemulsion droplets and studying the molecular interactions. Such mechanistic understanding also provides guidance to modulate the inter-droplet potential using pH and ionic strength. Moreover, the molecular understanding of the weak acid surfactant also sheds light on the destabilization of the nanoemulsion droplets triggered by a switch in pH. The control of the competition of attractive and repulsive interactions using external stimuli opens up the possibility to design complex nanoemulsion-based soft materials with controllable structures and rheological properties.

3.
Soft Matter ; 15(39): 7852-7862, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31531488

RESUMO

Polysaccharide-based hydrogels are being used in a wide variety of applications ranging from tissue engineering to food products due to their biocompatibility and the ease of gel formation. In real-life applications, hydrogels can undergo large strain deformation, which may result in structural damage leading to failure. Here, we report the nonlinear rheological properties and failure behavior of alginate hydrogels, a class of polysaccharide hydrogels, synthesized via ionic and covalent crosslinking. Gels with ionic crosslinks or ionic alginate hydrogels are prepared by addition of Ca2+ ions in the aqueous solution of sodium alginate, and the covalently crosslinked alginate gels or chemical alginate hydrogels are obtained via amidation reactions. Because of their structural differences, ionic and chemical alginate hydrogels display different scattering profiles captured by using small angle X-ray scattering (SAXS) technique. Both ionic and chemical alginate hydrogels exhibit strain stiffening behavior when subjected to large amplitude oscillatory shear (LAOS) and the strain-stiffening behavior is accompanied by negative normal stress. A custom-built cavitation rheometer has been utilized to probe the local failure behavior of these gels. The cavitation rheometry captures different defect growth or fracture mechanism in ionic versus chemical alginate hydrogels, even if these two types of gels have a similar linear elastic modulus. Based on the critical pressure for gel fracture, we have provided an estimate of the critical energy release rate.


Assuntos
Alginatos/química , Hidrogéis/química , Reologia , Fenômenos Mecânicos
4.
Nat Commun ; 10(1): 2749, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227703

RESUMO

Thermoresponsive nanoemulsions find utility in applications ranging from food to pharmaceuticals to consumer products. Prior systems have found limited translation to applications due to cytotoxicity of the compositions and/or difficulties in scaling-up the process. Here, we report a route to thermally gel an oil-in-water nanoemulsion using a small amount of FDA-approved amphiphilic triblock Pluronic copolymers which act as gelling agents. At ambient temperature the suspension displays liquid-like behavior, and quickly becomes an elastic gel at elevated temperatures. We propose a gelation mechanism triggered by synergistic action of thermally-induced adsorption of Pluronic copolymers onto the droplet interface and an increased micelle concentration in the aqueous solution. We demonstrate that the system's properties can be tuned via many factors and report their rheological properties. The nanoemulsions are prepared using a low-energy process which offers an efficient route to scale-up. The nanoemulsion formulations are well-suited for use in cosmetics and pharmaceutical applications.

5.
Int J Pharm ; 537(1-2): 122-131, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29253585

RESUMO

Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques.


Assuntos
Géis/química , Poloxâmero/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes/química , Cetoprofeno/química , Reologia/métodos
6.
Langmuir ; 33(31): 7769-7779, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28715639

RESUMO

Molecular gels have been investigated over the last few decades; however, mechanical behavior of these self-assembled gels is not well understood, particularly how these materials fail at large strain. Here, we report the gelation and rheological behavior of a molecular gel formed by self-assembly of a low molecular weight gelator (LMWG), di-Fmoc-l-lysine, in 1-propanol/water mixture. Gels were prepared by solvent-triggered technique, and gelation was tracked using Fourier transform infrared (FTIR) spectroscopy and shear rheology. FTIR spectroscopy captures the formation of hydrogen bonding between the gelator molecules, and the change in IR spectra during the gelation process correlates with the gelation kinetics results captured by rheology. Self-assembly of gelator molecules leads to a fiber-like structure, and these long fibers topologically interact to form a gel-like material. Stretched-exponential function can capture the stress-relaxation data. Stress-relaxation time for these gels have been found to be long owing to long fiber dimensions, and the stretching exponent value of 1/3 indicates polydispersity in fiber dimensions. Cavitation rheology captures fracture-like behavior of these gels, and critical energy release rate has been estimated to be of the order 0.1 J/m2. Our results provide new understanding of the rheological behavior of molecular gels and their structural origin.


Assuntos
Géis/química , Ligação de Hidrogênio , Reologia , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier
7.
ACS Omega ; 2(5): 1864-1874, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457548

RESUMO

Despite significant interest in molecular gels due to their intriguing structure formation through self-assembly and their stimuli-responsive behavior, our understanding of the gel formation mechanism of a low-molecular-weight gelator (LMWG) is incomplete. Here, we report a combined experimental and computational study on a LMWG, di-Fmoc-l-lysine, that has two aromatic moieties and multiple hydrogen bond donors and acceptors. Gelation in various organic solvent-water mixtures was obtained through the solvent-triggered technique. We show that an approach based on approximate cohesive energy density derived from density functional theory (DFT) calculations can capture the experimental solubility trend of LMWGs in different organic solvents. Furthermore, DFT calculations indicate parallel and helical structures to be the preferred structural motifs for gelator dimers. We believe that these motifs can potentially lead to fiber formation as observed with microscopy. Our work provides a relatively simple yet effective approach to quantify interactions between solvents and complex gelators that can help rationalize solubility and gelation behavior.

8.
AAPS PharmSciTech ; 17(1): 158-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26628438

RESUMO

Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Pomadas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Temperatura Alta , Reologia
9.
Soft Matter ; 11(21): 4315-25, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25915797

RESUMO

Polymer gels are subjected to large-strain deformation during their applications. The gel deformation at large-strain is non-linear and can often lead to failure of the material. Here, we report the large-strain deformation behavior of a physically cross-linked, swollen triblock copolymer gel, which displays unique strain-stiffening response at large-strain. Investigations were performed using large amplitude oscillatory shear (LAOS) and custom developed cavitation rheology techniques. The Gent constitutive equation, which considers finite extensibility of midblock, was fitted with the LAOS data, thereby, linking the estimated parameters from LAOS analysis to the structure of the gel. The pressure responses obtained from the cavitation experiments were modeled using neo-Hookean and Gent constitutive equations. Our results capture the failure behavior of a gel with finite chain extensibility, initiated from a defect within the gel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...