Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 110(2-1): 024204, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295059

RESUMO

We numerically study the dynamic behavior and driving region of spray combustion instability in a backward-facing step combustor using analytical methodologies based on dynamical systems theory, symbolic dynamics, complex networks, and machine learning. The global dynamic behavior of a heat release rate field represents low-dimensional chaotic oscillations with deterministically aperiodic intercycle dynamics. Spray combustion instability is driven in the formation and separation region of a large-scale organized vortex induced by the hydrodynamic shear layer instability at the edge of the backstep. This region corresponds fairly to that of the hub in an acoustic-energy-flux-based spatial network. The feature importance in a random forest is valid for clarifying the feedback coupling of spray combustion instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA