Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regen Ther ; 24: 479-488, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37767182

RESUMO

Introduction: Understanding the critical factors for the maturation of human induced pluripotent stem cell (hiPSC)-derived cardiac tissue is important for further development of culture techniques. Rotating flow culture, where the tissues float in the culture medium by balancing its gravitational settling and the medium flow generated in rotating disk-shaped culture vessels, is one of culture systems used for tissue engineering. It has previously been demonstrated that rotating flow culture leads to the formation of matured cardiac tissue with higher levels of function and structure than the other culture systems. However, the detailed mechanisms underlying the maturation of cardiac tissue remain unclear. This study investigated the maturation process of hiPSC-derived cardiac tissue in rotating flow culture with a focus on morphological changes in the tissue, which is a trigger for maturation. Methods: The cardiac tissue, which consisted of cardiomyocytes derived from hiPSCs, was cultured on the 3D scaffold of poly (lactic-co-glycolic) acid (PLGA)-aligned nanofibers, in rotating flow culture for 5 days. During the culture, the time profile of projected area of tissue and formation of maturation marker proteins (ß-myosin heavy chain and Connexin-43), tissue structure, and formation of nuclear lamina proteins (Lamin A/C) were compared with that in static suspension culture. Results: The ratio of the projected area of tissue significantly decreased from Day 0 to Day 3 due to tissue shrinkage. In contrast, Western blot analysis revealed that maturation protein markers of cardiomyocytes significantly increased after Day 3. In addition, in rotating flow culture, flat-shaped nuclei and fiber-like cytoskeletal structures were distributed in the surface region of tissue where medium flow was continuously applied. Moreover, Lamin A/C, which are generally formed in differentiated cells owing to mechanical force across the cytoskeleton and critically affect the maturation of cardiomyocytes, were significantly formed in the tissue of rotating flow culture. Conclusions: In this study, we found that spatial heterogeneity of tissue structure and tissue shrinkage occurred in rotating flow culture, which was not observed in static suspension culture. Moreover, from the quantitative analysis, it was also suggested that tissue shrinkage in rotating flow culture contributed its following tissue maturation. These findings showed one of the important characteristics of rotating flow culture which was not revealed in previous studies.

2.
J Biosci Bioeng ; 129(4): 494-501, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31826834

RESUMO

Understanding of kinetics on aggregate behaviors of human induced pluripotent stem cells (hiPSCs) is critical knowledge for culture design because aggregate behaviors are considered to affect cell growth. In this study, we elucidated kinetics on aggregate behaviors of two types of hiPSCs (253G1 and 201B7 lines) to clarify the influence of aggregate behaviors on cell growth by comparing aggregate morphology, size of cell aggregates, and kinetic parameters in 72 h culture under static and floating conditions, which were realized by multi-dimple plate and rotating wall vessel, respectively. In the case of 253G1 line under floating condition, aggregate number decreased and size increased drastically during culture time, t = 0-24 h due to coalescence between cell aggregates. The apparent specific growth rate decreased after t = 24 h although cell number and aggregate size gradually increased under static condition. In the case of 201B7 line under floating condition, cell and aggregate number, and aggregate size kept constant levels during t = 24-72 h due to collapse of cell aggregates by stripping of single cells from aggregate, suggesting that specific death rate increased after t = 24 h despite constant levels of apparent specific growth rate and aggregate number under static condition. Our kinetic analysis concluded that excessive increase of aggregate size due to coalescence and cell death due to collapse critically affected growth of hiPSCs in suspension culture.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Adesão Celular , Agregação Celular , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Cinética , Rotação , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Suspensões , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...