Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930995

RESUMO

Since the discovery of metal-catalyzed azide-alkyne cycloadditions, 1,2,3-triazoles have been widely used as linkers for various residues. 1,2,3-Triazole is an aromatic five-membered cyclic compound consisting of three nitrogen and two carbon atoms with large dipoles that absorb UV light. In the past decade, we have been working on the synthesis of dense triazole polymers possessing many 1,2,3-triazole residues linked through a carbon atom in their backbone as a new type of functional polymer. Recently, we reported that stereoregular dense triazole uniform oligomers exhibit a circular dichroism signal based on the chiral arrangement of two neighboring 1,2,3-triazole residues. In this study, to investigate the chiral conformation of two neighboring 1,2,3-triazole residues in stereoregular dense triazole uniform oligomers, density functional theory (DFT) calculations were performed using 1,2,3-triazole diads with different substitution positions and conformations as model compounds and compared with our previous results.

2.
Langmuir ; 40(13): 7178-7191, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506447

RESUMO

The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and ßCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.

3.
Polymers (Basel) ; 15(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177345

RESUMO

Ruthenium(II)-catalyzed azide-alkyne cycloaddition (RuAAC) polymerization of t-butyl 4-azido-5-hexynoate (tBuAH), i.e., a heterobifunctional monomer carrying azide and alkyne moieties, was investigated in this study. RuAAC of the monofunctional precursors of tBuAH yielded a dimer possessing a 1,5-disubstituted 1,2,3-triazole moiety. 1H NMR data showed that the dimer was a mixture of diastereomers. Polymerization of tBuAH using ruthenium(II) (Ru(II)) catalysts produced oligomers of Mw ≈ (2.7-3.6) × 103 consisting of 1,5-disubstituted 1,2,3-triazole units (1,5-units) as well as 1,4-disubstituted 1,2,3-triazole units (1,4-units). The fractions of 1,5-unit (f1,5) were roughly estimated to be ca. 0.8 by comparison of signals of the methine and triazole protons in 1H NMR spectra, indicating that RuAAC proceeded preferentially and thermal Huisgen cycloaddition (HC) somehow took place during the polymerization. The oligomer samples obtained were also characterized by solubility test, size exclusion chromatography (SEC), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). The UV-Vis and TGA data indicated that the oligomer samples contained a substantial amount of Ru(II) catalysts. To the best of our knowledge, this is the first report on dense 1,2,3-triazole oligomers consisting of 1,5-units linked via a carbon atom.

4.
RSC Adv ; 13(6): 4089-4095, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756559

RESUMO

To realize sustainable societies, the production of organic compounds not based on fossil resources should be developed. Thus, C1 chemistry, utilizing one-carbon compounds as starting materials, has been of increasing importance. In particular, the formose reaction is promising because the reaction produces sugars (monosaccharides) from formaldehyde under basic conditions. On the other hand, since microwave (MW) induces the rotational motion of molecules, MW irradiation often improves the selectivity and efficiency of reactions. In this study, the formose reaction under MW irradiation was thus investigated under various conditions. The formose reaction proceeded very fast using 1.0 mol per kg formaldehyde and 55 mmol per kg calcium hydroxide (Ca(OH)2) as a catalyst at a high set temperature (150 °C) for a short time (1 min) to form preferentially specific hexose and heptose. The major products were isolated by thin layer chromatography and characterized by mass spectroscopy and NMR. These characterization data elucidated that the hexose and heptose were 2-hydroxymethyl-1,2,4,5-tetrahydroxy-3-pentanone (C6*) and 2,4-bis(hydroxymethyl)-1,2,4,5-tetrahydroxy-3-pentanone (C7*), respectively. On the basis of these observations, as well as density functional theory calculations, a plausible reaction pathway was also discussed; once 1,3-dihydroxyacetone is formed, consecutive aldol reactions favorably occur to form C6* and C7*.

5.
Langmuir ; 38(17): 5156-5165, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797074

RESUMO

Thermoresponsive water-soluble polymers, aqueous solutions of which undergo lower critical solution temperature (LCST)-type phase separation, have been investigated in detail for several decades. To develop LCST-type thermoresponsive polymers with new polymer backbone, 4-azido-5-hexynamide (AHA) derivatives were designed as monomers for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization. AHA derivatives carrying secondary amide side chains, that is, 4-azido-N-methyl-5-hexynamide (M), 4-azido-N-ethyl-5-hexynamide (E), and 4-azido-N-isopropyl-5-hexynamide (iP), were first synthesized and polymerized by CuAAC to obtain polymers (poly(M), poly(E), and poly(iP)). Contrary to our expectation, poly(M), poly(E), and poly(iP) were insoluble in water and many organic solvents presumably because of the formation of hydrogen bonding between the amide side chains or between the amide side chains and triazole residues in the backbone. Thus, AHA derivatives carrying tertiary amide side chains, that is, 4-azido-N,N-dimethyl-5-hexynamide (MM), 4-azido-N-ethyl-N-methyl-5-hexynamide (ME), 4-azido-N-isopropyl-N-methyl-5-hexynamide (MiP), and 4-azido-N,N-diethyl-5-hexynamide (EE), were also synthesized and polymerized to yield polymers (poly(MM), poly(ME), poly(MiP), and poly(EE)). These polymers were soluble in a number of common organic solvents. It is noteworthy that poly(MM) and poly(ME) were also soluble in water. The phase separation behavior of 1.0 wt % aqueous solutions of poly(MM) and poly(ME) was then investigated by transmittance measurements. These data indicated that poly(ME) was an LCST-type thermoresponsive polymer, whereas poly(MM) was not. A large hysteresis was observed in the transmittance measurements for the poly(ME) aqueous solution because of slow rehydration after phase separation. The phase separation behavior was investigated preliminarily by differential scanning calorimetry and 1H NMR.

6.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067589

RESUMO

Polyanions are an important class of water-soluble polymers because polyanions are utilized in a wide range of industrial fields. It is thus a great challenge to develop polyanions with novel structures to make their applications broader. In this study, a new polyanion with a dense 1,2,3-triazole backbone, poly(4-azido-5-hexanoic acid) (poly(AH)), was synthesized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization of t-butyl 4-azido-5-hexanoate followed by hydrolysis of the t-butyl ester groups. Turbidimetric and potentiometric titration data indicated that poly(AH) was well soluble in water under basic conditions (pH < 7) and a weaker polyanion (apparent pKa = 5.4) than polyacrylic acid (apparent pKa = 4.5). Adsorption tests exhibited that sodium salt of poly(AH) (poly(AH)Na) adsorbed most preferably Fe3+ among the four metal ions examined, i.e., Cu2+, Pb2+, Li+, and Fe3+. 1H spin-lattice relaxation time measurements indicated that Fe3+ ions were adsorbed favorably onto the 1,2,3-triazole residues.

7.
Polymers (Basel) ; 13(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067908

RESUMO

Aiming at synthesis of dense 1,2,3-triazole polymers soluble in common organic solvents, a new 3-azido-1-propyne derivative, i.e., t-butyl 4-azido-5-hexynoate (tBuAH), was synthesized and polymerized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and Huisgen cycloaddition (HC). CuAAC polymerization produced poly(tBuAH) composed of 1,4-disubstituted 1,2,3-triazole units (1,4-units), whereas HC polymerization gave poly(tBuAH) composed of 1,4- and 1,5-disubstituted 1,2,3-triazole units (1,4- and 1,5-units). In HC polymerization, the fraction of 1,4-unit (f1,4) decreased with the permittivity of solvent used. Differential scanning calorimetry data indicated that the melting point of poly(tBuAH) increased from 61 to 89 °C with increasing f1,4 from 0.38 to 1.0, indicative of higher crystallinity of poly(tBuAH) composed of 1,4-unit. Preliminary steady-state fluorescence study indicated that all the poly(tBuAH) samples of different f1,4 emitted weak but significant fluorescence in DMF. The maximum of fluorescence band shifted from ca. 350 to ca. 450 nm with varying the excitation wavelength from 300 to 400 nm.

8.
Sci Rep ; 11(1): 6320, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737714

RESUMO

Biological macroscopic assemblies have inspired researchers to utilize molecular recognition to develop smart materials in these decades. Recently, macroscopic self-assemblies based on molecular recognition have been realized using millimeter-scale hydrogel pieces possessing molecular recognition moieties. During the study on macroscopic self-assembly based on molecular recognition, we noticed that the shape of assemblies might be dependent on the host-guest pair. In this study, we were thus motivated to study the macroscopic shape of assemblies formed through host-guest interaction. We modified crosslinked poly(sodium acrylate) microparticles, i.e., superabsorbent polymer (SAP) microparticles, with ß-cyclodextrin (ßCD) and adamantyl (Ad) residues (ßCD(x)-SAP and Ad(y)-SAP microparticles, respectively, where x and y denote the mol% contents of ßCD and Ad residues). Then, we studied the self-assembly behavior of ßCD(x)-SAP and Ad(y)-SAP microparticles through the complexation of ßCD with Ad residues. There was a threshold of the ßCD content in ßCD(x)-SAP microparticles for assembly formation between x = 22.3 and 26.7. On the other hand, the shape of assemblies was dependent on the Ad content, y; More elongated assemblies were formed at a higher y. This may be because, at a higher y, small clusters formed in an early stage can stick together even upon collisions at a single contact point to form elongated aggregates, whereas, at a smaller y, small clusters stick together only upon collisions at multiple contact points to give rather circular assemblies. On the basis of these observations, the shape of assembly formed from microparticles can be controlled by varying y.

9.
Polymers (Basel) ; 11(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247953

RESUMO

This article describes a new block copolymer (EGm-b-APn, where m and n denote the degrees of polymerization) of poly(ethylene glycol) (PEG) and poly(1,4-(1-H-1,2,3-triazolylene)methylene) prepared by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization of 3-azido-1-propyne (AP) in the presence of PEG carrying a propargyl moiety. The EGm-b-APn samples are well soluble in polar organic solvents. Unexpectedly, we observed that solutions of EGm-b-APn in N,N-dimethylformamide emitted fluorescence. We systematically studied absorption and emission properties of the block copolymers. The experimental data have exhibited that APn block is an intrinsic fluorophore. Interestingly, the emission of EGm-b-APn can be easily tuned from ultraviolet to green fluorescence by changing the excitation wavelength. This enables fine-tuning of its optical property without the need of changing the chromophore. Moreover, the block copolymers show a fluorescence response to metal ions (e.g., Cu2+). Our discoveries contribute to the fundamental understanding of the optical properties of dense triazole-based polymer and raise intriguing prospects for fabricating novel emissive triazole-based materials.

10.
Sci Rep ; 8(1): 8950, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895967

RESUMO

In the molecular world, molecular ratchets can realize the unidirectional movement in molecular machines. However, construction of artificial molecular ratchets has been still a great challenge. In this study, we investigate the formation of pseudo-rotaxane of a newly designed two-station axis molecule with α-cyclodextrin (α-CD) and the deuteration of acidic protons in the axis in D2O by 1H NMR at varying temperatures. Using the NMR data, we roughly estimate apparent rate constants for association, dissociation, and translation of α-CD during the pseudo-rotaxane formation based on a simplified kinetic model. These rate constants are indicative of face-selective and ratchet-like translation of α-CD on the axis because of the 2-methylpyridinium residues in the axis. We also evaluate apparent first-order rate constants for the deuteration. Comparison of these rate constants indicates that the face-selective translation of α-CD somehow couples with the deuteration. On the basis of this study, it is concluded that a translational molecular ratchet can be constructed using a large energy gradient with appropriate energy barriers and an enthalpically-driven coupled reaction.

11.
Polymers (Basel) ; 9(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30965856

RESUMO

The formose reaction is an oligomerization of formaldehyde under basic conditions, which produces a complicated mixture of monosaccharides and sugar alcohols. Selective formation of useful monosaccharides by the formose reaction has been an important challenge. In this study, we have investigated the formose reaction controlled by N,N-dimethylacrylamide/4-vinylphenylboronic acid copolymer (pDMA/VBA) and phenylboronic acid (PBA) because boronic acid compounds form esters with polyols, e.g., monosaccharides and sugar alcohols. We obtained time⁻conversion data in the presence of these boronic acid compounds, and characterized the products by liquid chromatography-mass spectroscopy and NMR measurements. pDMA/VBA and PBA decelerated the formose reaction because of the formation of boronic acid esters with products. It is noteworthy that the formose reaction in the presence of pDMA/VBA and PBA formed favorably six- and seven-carbon branched monosaccharides and sugar alcohols.

12.
Beilstein J Org Chem ; 12: 2663-2667, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144336

RESUMO

The formose reaction in reverse micelles of aerosol-OT (AOT), triton X-100 (TX), and hexadecyltrimethylammonium bromide (CTAB) was investigated. Time-conversion data have indicated that the interfacial water layer of AOT reverse micelles is a medium that accelerates formation of glycolaldehyde in the formose reaction. The 13C NMR spectra for the products of the formose reaction using formaldehyde-13C as starting material are indicative of the formation of ethylene glycol as a major product.

13.
Beilstein J Org Chem ; 12: 2668-2672, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144337

RESUMO

Formose reactions were carried out in the presence of low molecular weight and macromolecular boronic acid compounds, i.e., sodium phenylboronate (SPB) and a copolymer of sodium 4-vinylphenylboronate with sodium 4-styrenesulfonate (pVPB/NaSS), respectively. The boronic acid compounds provided different selectivities; sugars of a small carbon number were formed favorably in the presence of SPB, whereas sugar alcohols of a larger carbon number were formed preferably in the presence of pVPB/NaSS.

14.
Sci Rep ; 5: 16254, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26537172

RESUMO

Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.


Assuntos
Apoenzimas/química , Géis/química , Apoenzimas/metabolismo , Catálise , Domínio Catalítico , Citocromos/metabolismo , Compostos Orgânicos/química , Oxigênio/metabolismo
15.
Macromol Rapid Commun ; 36(23): 2055-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26344702

RESUMO

This Communication describes a new light-controlled release system based on molecular recognition of cyclodextrins. Azobenzene (Azo) residue is employed as a photoresponsive guest residue because it can switch the partner from α-cyclodextrin (αCD) to ß-cyclodextrin (ßCD) by irradiation with UV light. Poly(sodium acrylate)s possessing αCD, ßCD, and Azo residues (pAαCD, pAßCD, and pAAzo, respectively) are mixed in aqueous solutions to form aggregates through the formation of inclusion complexes of Azo with αCD and/or ßCD. A chemical cargo, 1-pyrenemethylammonium chloride (PyMA), is contained in the aggregates, and its release behavior is investigated by dialysis experiments under UV irradiation. These data indicate that the amount of PyMA released for the pAαCD/pAßCD/pAAzo ternary mixture is approximately three times as high as those for the pAαCD/pAAzo and pAßCD/pAAzo binary mixtures because of the light-controlled rearrangement of inclusion complexes.


Assuntos
Resinas Acrílicas/química , Compostos Azo/química , Ciclodextrinas/química , Raios Ultravioleta , Preparações de Ação Retardada/química
16.
Beilstein J Org Chem ; 11: 1037-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199658

RESUMO

3-Azido-1-propyne oligomer (oligoAP) samples, prepared by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization, were quarternized quantitatively with methyl iodide in sulfolane at 60 °C to obtain soluble oligomers. The conformation of the quarternized oligoAP in dilute DMSO-d 6 solution was examined by pulse-field-gradient spin-echo NMR based on the touched bead model.

17.
Chemistry ; 21(7): 2770-4, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25536911

RESUMO

We have created a selective macroscopic self-assembly process by using polymer gels modified with complementary DNA oligonucleotides or nucleobases. The hydrogels modified with complementary DNA oligonucleotides adhered to each other by simple contact. The organogels modified with complementary nucleobases selectively formed macroscopic assemblies by agitation in nonpolar organic solvents. The adhesion strength of each gel was estimated semi-quantitatively by stress-strain measurements. We achieved direct adhesion between macroscopic materials both in water and in organic media, based on complementary hydrogen bonds.


Assuntos
Pareamento de Bases/genética , Sítios de Ligação , Ligação de Hidrogênio , Estrutura Molecular , Conformação de Ácido Nucleico , Compostos Orgânicos
18.
Nat Commun ; 5: 4622, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25099995

RESUMO

Common adhesives stick to a wide range of materials immediately after they are applied to the surfaces. To prevent indiscriminate sticking, smart adhesive materials that adhere to a specific target surface only under particular conditions are desired. Here we report a polymer hydrogel modified with both ß-cyclodextrin (ßCD) and 2,2'-bipyridyl (bpy) moieties (ßCD-bpy gel) as a functional adhesive material responding to metal ions as chemical stimuli. The adhesive property of ßCD-bpy gel based on interfacial molecular recognition is expressed by complexation of metal ions to bpy that controlled dissociation of supramolecular cross-linking of ßCD-bpy. Moreover, adhesion of ßCD-bpy gel exhibits selectivity on the kinds of metal ions, depending on the efficiency of metal-bpy complexes in cross-linking. Transduction of two independent chemical signals (metal ions and host-guest interactions) is achieved in this adhesion system, which leads to the development of highly orthogonal macroscopic joining of multiple objects.

19.
Top Curr Chem ; 354: 71-110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789535

RESUMO

This chapter overviews molecular machines based on cyclodextrins (CDs). The categories of CD-based molecular machines, external stimuli for CD-based molecular machines, and typical examples of CD-based molecular machines are briefly described.

20.
ACS Macro Lett ; 3(4): 337-340, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35590743

RESUMO

The interaction between poly(acrylamide) gels carrying phenylboronic acid (PB gel) and catechol moieties (CAT gel) respectively is investigated. The PB gel forms an assembly with the CAT gel on a macroscopic scale in basic aqueous media. The adhesion strength is estimated by stress-strain measurements. The assembly and disassembly of the gels are reversibly switched by varying the pH of the medium. The adhesion strength is tunable by competitive monosaccharide molecules in accordance with the association constant with PB moieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...