Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(25): 4045-4053, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38804516

RESUMO

Facile and effective analysis methods are desirable for elucidating the behaviours of metabolites during fermentation reactions. Herein, a multifunctional-separation-mode ion chromatography (MFS-IC) method was developed for the simultaneous monitoring of major metabolites during multiple parallel fermentation, including those related to central carbon metabolism (saccharification, glycolysis, alcoholic fermentation, and the tricarboxylic acid (TCA) cycle). The use of two types of sulfo-modified size-exclusion columns and phthalic acid as the eluent allowed the separation of oligosaccharides (disaccharides, trisaccharides, and tetrasaccharides), glucose, pyruvate, and major organic acids during the TCA cycle (cis-aconitate, citrate, iso-citrate, malate, fumarate, and succinate but not α-ketoglutarate) from other non-target analytes. The MFS-IC method was successfully applied to monitoring the major metabolites in the rice wine brewing process. This approach can contribute to an improved understanding of metabolite behaviour during fermentation without requiring the use of expensive advanced instrumentation methods such as liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.


Assuntos
Fermentação , Oryza , Vinho , Oryza/química , Oryza/metabolismo , Vinho/análise , Cromatografia por Troca Iônica/métodos , Ciclo do Ácido Cítrico
2.
Biosci Biotechnol Biochem ; 88(5): 509-516, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38425056

RESUMO

Nutrient availability in hydroponic solutions must be accurately monitored to maintain crop productivity; however, few cost-effective, accurate, real-time, and long-term monitoring technologies have been developed. In this study, we describe the development and application of cation-/anion-exchange chromatography with a neutral eluent (20-mmol/L sodium formate, pH 7.87) for the simultaneous separation (within 50 min) of ionic nutrients, including K+, NH4+, NO2-, NO3-, and phosphate ion, in a hydroponic fertilizer solution. Using the neutral eluent avoided degradation of the separation column during precipitation of metal ion species, such as hydroxides, with an alkaline eluent and oxidation of NO2- to NO3- with an acidic eluent. The suitability of the current method for monitoring ionic components in a hydroponic fertilizer solution was confirmed. Based on our data, we propose a controlled fertilizer strategy to optimize fertilizer consumption and reduce the chemical load of drained fertilizer solutions.


Assuntos
Fertilizantes , Hidroponia , Soluções , Hidroponia/métodos , Cromatografia por Troca Iônica/métodos , Fertilizantes/análise , Nutrientes/análise , Cátions/análise , Fosfatos/análise , Concentração de Íons de Hidrogênio , Potássio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...