Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 767944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804997

RESUMO

Recent studies have shown phenotypic and metabolic heterogeneity in related species including Streptococcus oralis, a typical oral commensal bacterium, Streptococcus mutans, a cariogenic bacterium, and Streptococcus gordonii, which functions as an accessory pathogen in periodontopathic biofilm. In this study, metabolites characteristically contained in the saliva of individuals with good oral hygiene were determined, after which the effects of an identified prebiotic candidate, D-tagatose, on phenotype, gene expression, and metabolic profiles of those three key bacterial species were investigated. Examinations of the saliva metabolome of 18 systemically healthy volunteers identified salivary D-tagatose as associated with lower dental biofilm abundance in the oral cavity (Spearman's correlation coefficient; r = -0.603, p = 0.008), then the effects of D-tagatose on oral streptococci were analyzed in vitro. In chemically defined medium (CDM) containing D-tagatose as the sole carbohydrate source, S. mutans and S. gordonii each showed negligible biofilm formation, whereas significant biofilms were formed in cultures of S. oralis. Furthermore, even in the presence of glucose, S. mutans and S. gordonii showed growth suppression and decreases in the final viable cell count in a D-tagatose concentration-dependent manner. In contrast, no inhibitory effects of D-tagatose on the growth of S. oralis were observed. To investigate species-specific inhibition by D-tagatose, the metabolomic profiles of D-tagatose-treated S. mutans, S. gordonii, and S. oralis cells were examined. The intracellular amounts of pyruvate-derived amino acids in S. mutans and S. gordonii, but not in S. oralis, such as branched-chain amino acids and alanine, tended to decrease in the presence of D-tagatose. This phenomenon indicates that D-tagatose inhibits growth of those bacteria by affecting glycolysis and its downstream metabolism. In conclusion, the present study provides evidence that D-tagatose is abundant in saliva of individuals with good oral health. Additionally, experimental results demonstrated that D-tagatose selectively inhibits growth of the oral pathogens S. mutans and S. gordonii. In contrast, the oral commensal S. oralis seemed to be negligibly affected, thus highlighting the potential of administration of D-tagatose as an oral prebiotic for its ability to manipulate the metabolism of those targeted oral streptococci.


Assuntos
Hexoses , Prebióticos , Biofilmes , Humanos , Especificidade da Espécie , Streptococcus gordonii , Streptococcus mutans
2.
Sci Rep ; 7: 42818, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28220901

RESUMO

Onset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity. Furthermore, we investigated disease-associated metabolic signatures of periodontal microbiota using a salivary metabolomics approach. Whole saliva samples were obtained from adult subjects before and after removal of supragingival plaque (debridement). Periodontal inflamed surface area (PISA) was employed as an indicator of periodontal inflammatory status. Based on multivariate analyses using pre-debridement salivary metabolomics data, we found that metabolites associated with higher PISA included cadaverine and hydrocinnamate, while uric acid and ethanolamine were associated with lower PISA. Next, we focused on dental plaque metabolic byproducts by selecting salivary metabolites significantly decreased following debridement. Metabolite set enrichment analysis revealed that polyamine metabolism, arginine and proline metabolism, butyric acid metabolism, and lysine degradation were distinctive metabolic signatures of dental plaque in the high PISA group, which may be related to the metabolic signatures of disease-associated communities. Collectively, our findings identified potential biomarkers of periodontal inflammatory status and also provide insight into metabolic signatures of dysbiotic communities.


Assuntos
Periodontite Crônica/patologia , Placa Dentária/metabolismo , Adulto , Área Sob a Curva , Biomarcadores/metabolismo , Cadaverina/metabolismo , Periodontite Crônica/metabolismo , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Fenilpropionatos/metabolismo , Curva ROC , Saliva/metabolismo , Índice de Gravidade de Doença
3.
J Biol Chem ; 290(35): 21185-98, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26085091

RESUMO

Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Antiporters/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Infecções Estreptocócicas/microbiologia , Streptococcus gordonii/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Antiporters/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Fusobacterium nucleatum/fisiologia , Deleção de Genes , Humanos , Interações Microbianas , Ornitina/metabolismo , Streptococcus gordonii/genética , Streptococcus gordonii/crescimento & desenvolvimento
4.
Gene Expr Patterns ; 13(8): 372-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23872338

RESUMO

The Odd-skipped gene, first identified as a Drosophila pair-rule zinc-finger transcription factor, plays an important role in Drosophila development. The mammalian homolog, Odd-skipped related 2 (Osr2), regulates limb, tooth, and kidney development in mouse embryos. However, the detailed expression pattern of Osr2 during neonatal development remains unclear. In this study, we investigated Osr2 expression patterns in mouse neonatal and embryo tissues using qPCR and in situ hybridization methods. First, we examined the tissue distribution of Osr2 by qPCR, and found it to be highly expressed in the uterus and moderately in the testes, small intestine, and prostate. That expression was also found in eye, kidney, placenta, lung, thymus, lymph node, stomach, and skeletal muscle tissues, and in all embryonic stages. On the other hand, Osr2 was not expressed in brain, heart, liver, or spleen samples. Next, we examined the tissue localization of Osr2 using in situ hybridization. Osr2 was found in the craniofacial region on E13.5, with notable expression in dental germ mesenchyme as well as the renal corpuscle on E17.5. As for neonatal tissues, Osr2 was expressed in the dental papilla, dental follicle, Harderian gland, nasal bone, eyelid dermis, synovial joint, and tibial subcutis. Our findings suggest that Osr2 functions in reproductive system organs, such as the uterus, testes, prostate, placenta, and ovaries. Furthermore, based on its expression in kidney, Harderian gland, eyelid dermis, and tibial subcutis tissues, this transcription factor may be involved in hormone synthesis and function. Together, our results demonstrate the role of Osr2 in postnatal development and embryogenesis.


Assuntos
Expressão Gênica , Fatores de Transcrição/metabolismo , Animais , Osso e Ossos/metabolismo , Papila Dentária/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mucosa Nasal/metabolismo , Especificidade de Órgãos , Placenta/metabolismo , Gravidez , Próstata/metabolismo , Testículo/metabolismo , Fatores de Transcrição/genética , Útero/metabolismo
5.
Infect Immun ; 77(11): 5130-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737900

RESUMO

Porphyromonas gingivalis forms communities with antecedent oral biofilm constituent streptococci. P. gingivalis major fimbriae bind to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) present on the streptococcal surface, and this interaction plays an important role in P. gingivalis colonization. This study identified the binding domain of Streptococcus oralis GAPDH for P. gingivalis fimbriae. S. oralis recombinant GAPDH (rGAPDH) was digested with lysyl endopeptidase. Cleaved fragments of rGAPDH were applied to a reverse-phase high-pressure liquid chromatograph equipped with a C18 column. Each peak was collected; the binding activity toward P. gingivalis recombinant fimbrillin (rFimA) was analyzed with a biomolecular interaction analysis system. The fragment displaying the strongest binding activity was further digested with various proteinases, after which the binding activity of each fragment was measured. The amino acid sequence of each fragment was determined by direct sequencing, mass spectrometric analysis, and amino acid analysis. Amino acid residues 166 to 183 of S. oralis GAPDH exhibited the strongest binding activity toward rFimA; confocal laser scanning microscopy revealed that the synthetic peptide corresponding to amino acid residues 166 to 183 of S. oralis GAPDH (pep166-183, DNFGVVEGLMTTIHAYTG) inhibits S. oralis-P. gingivalis biofilm formation in a dose-dependent manner. Moreover, pep166-183 inhibited interbacterial biofilm formation by several oral streptococci and P. gingivalis strains with different types of FimA. These results indicate that the binding domain of S. oralis GAPDH for P. gingivalis fimbriae exists within the region encompassing amino acid residues 166 to 183 of GAPDH and that pep166-183 may be a potent inhibitor of P. gingivalis colonization in the oral cavity.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas de Fímbrias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Porphyromonas gingivalis/fisiologia , Streptococcus oralis/fisiologia , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Proteínas de Fímbrias/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Microscopia Confocal , Dados de Sequência Molecular , Ligação Proteica
6.
BMC Microbiol ; 9: 105, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19470157

RESUMO

BACKGROUND: Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA) and short (Mfa) fimbriae as well as gingipains comprised of arginine-specific (Rgp) and lysine-specific (Kgp) cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms. RESULTS: Biofilms were formed on saliva-coated glass surfaces in PBS or diluted trypticase soy broth (dTSB). Microscopic observation showed that the wild type strain formed biofilms with a dense basal monolayer and dispersed microcolonies in both PBS and dTSB. A FimA deficient mutant formed patchy and small microcolonies in PBS, but the organisms proliferated and formed a cohesive biofilm with dense exopolysaccharides in dTSB. A Mfa mutant developed tall and large microcolonies in PBS as well as dTSB. A Kgp mutant formed markedly thick biofilms filled with large clumped colonies under both conditions. A RgpA/B double mutant developed channel-like biofilms with fibrillar and tall microcolonies in PBS. When this mutant was studied in dTSB, there was an increase in the number of peaks and the morphology changed to taller and loosely packed biofilms. In addition, deletion of FimA reduced the autoaggregation efficiency, whereas autoaggregation was significantly increased in the Kgp and Mfa mutants, with a clear association with alteration of biofilm structures under the non-proliferation condition. In contrast, this association was not observed in the Rgp-null mutants. CONCLUSION: These results suggested that the FimA fimbriae promote initial biofilm formation but exert a restraining regulation on biofilm maturation, whereas Mfa and Kgp have suppressive and regulatory roles during biofilm development. Rgp controlled microcolony morphology and biovolume. Collectively, these molecules seem to act coordinately to regulate the development of mature P. gingivalis biofilms.


Assuntos
Adesinas Bacterianas/fisiologia , Biofilmes/crescimento & desenvolvimento , Cisteína Endopeptidases/fisiologia , Fímbrias Bacterianas/fisiologia , Porphyromonas gingivalis/fisiologia , Meios de Cultura , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Cisteína Endopeptidases Gingipaínas , Porphyromonas gingivalis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...